Желто оранжевый цвет огонь. Почему огонь бывает разного цвета, от чего зависит цвет пламени

    Зажгите свечу и внимательно рассмотрите пламя. Вы заметите, что оно неоднородно по цвету. Пламя имеет три зоны (рис.). Темная зона 1 находится в нижней части пламени. Это самая холодная зона по сравнению с другими. Темную зону окаймляет самая яркая часть пламени 2. Температура здесь выше, чем в темной зоне, но наиболее высокая температура в верхней части пламени 3 .

    Чтобы убедиться, что различные зоны пламени имеют разную температуру, можно провести такой опыт. Поместите лучинку (или спичку) в пламя так, чтобы она пересекала все три зоны. Вы увидите, что лучинка сильнее обуглилась там, где она попала в зоны 2 и 3. Значит, пламя там более горячее.

    Ко всем ответам добавлю еще одну деталь, которая используется химиками. В структуре пламени существует несколько зон. Та, что внутренняя, голубая, наиболее холодная (относительно других зон) - это, так называемое, восстановительное пламя. Т.е. в нем можно проводить реакции восстановления (к примеру оксидов металлов). Верхняя часть, желто-красная - это наиболее горячая зона, которую также называют окислительным пламенем. Именно в ней происходит окисление паров вещества кислородом воздуха (если, конечно, речь идет про обычное пламя). В нем можно проводить соответствующие химические реакции.

    Цвет огня зависит от химических элементов которые сгорают при горении, например если вы хотите увидеть голубой огонек, то он появляется горении природного газа, и обусловлен угарным газом, который и дает этот оттенок. Желтые язычки пламени появляются при распадении солей натрия. Такими солями богата древесина, поэтому обычный лесной костер или бытовые спички горят желтым пламенем. Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имеет яркий зеленый цвет, практически идентичный белому.

    Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма. В синий окрашивает пламя селен, а в сине-зеленый - бор. Красное пламя даст литий, стронций и кальций, фиолетовое калий, желто-оранжевый оттенок выходит при сгорании натрий.

    Ну а если кому интересно более подробная информация обращайтесь на эту страницу http://allforchildren.ru/why/misc33.php

    цвет пламени зависет от его температуры, а так же от состава вещества которое горит:

    4300К - бело-желтый, самый яркий свет;

    5000К - холодный белый цвет;

    6000К - белый с легким голубым

    8000К - сине-голубой - качество освещения хуже.

    12000К фиолетовый

    Так что на самом деле самое горячие пламя у свечи с низу, а не сверху, как сказал Максим26ru 325, а температура на острие пламени выше лишь благодаря наличию гравитации на Земле - возникают конвекционные потоки в результате чего жар устремляется вертикально вверх.

    Цвет огня зависит напрямую от температуры пламени, а температура в свою очередь высвобождает какое-либо вещество, которое будет в свом спектре давать определнный цвет. Например:

    Углевод дат голубой цвет;

    Бор - Сине-зелный;

    Жлто-оранжевый цвет выделяют соли натрия

    Зелный цвет происходит от высвобождения меди, молибдена, фосфора, бария, сурьмы

    Синий - это селен

    Красный от выделения лития и кальция

    Фиолетовый дат калий

    Вначале, как сказал Александр Антипов - да, цвет пламени определяется его температурой (если я не ошибаюсь, доказано Планком). А затем в пламени накапливается материал того, что горит. Атомы разных элементов способны поглощать кванты с определенной энергией и испускать их обратно, но уже с энергией, зависящей от природы атома. Желтый цвет - это цвет натрия в пламени. Натрий есть в любом природном органическом материале. А желтый цвет способен заглушить другие цвета - такова особенность человеческого зрения.

    Ну это смотря еще какой огонь. Он может быть любого цвета, в зависимости от горящего вещества. А такое сине-желтое пламя от его нагрева. Чем дальше пламя от горящего вещества, тем бпльше кислорода. А чем больше кислорода, тем жарче пламя и значит светлее и ярче.

    Вообще температура внутри пламени различна и с течение времени она меняется (зависит от притока кислорода и горючего вещества). Синий цвет означает что температура очень высокая до 1400 С, желтый - температура чуть меньше, чем когда синее пламя.

    Цвет пламени может меняться в зависимости от химических примесей.

На протяжении многих веков огонь играет очень важную роль в жизни человека. Без него практически невозможно представить наше существование. Он используется во всех сферах промышленности, а также для приготовления пищи, согревания дома и развития технического прогресса.

Впервые огонь появился в эпоху раннего палеолита. Изначально он применялся в борьбе против различных насекомых и нападений диких животных, а также давал свет и тепло. И только потом пламя огня применяли в кулинарии, изготовлении посуды и орудий труда. Так огонь вошел в нашу жизнь и стал «незаменимым помощником» человека.

Многие из нас замечали, что пламя может быть разным по своей цветовой гамме, но не многие знают, почему же огненная стихия обладает пестрой окраской. Как правило, цветовая гамма огня зависит от того, какое химическое вещество в нем сгорает. Благодаря воздействию высокой температуры все атомы химических веществ освобождаются, таким образом, придавая оттенок огню. Также было проведено большое количество экспериментов, о которых в этой статье будет написано чуть ниже, с целью того, чтобы понять, каким образом эти вещества оказывают воздействие на цвет полымя.

Еще издавна ученые прилагали усилия, чтобы понять, какие химические вещества сгорают в пламени, в зависимости от того, какую окраску принимал огонь.

Все мы дома при приготовлении пищи можем наблюдать огонек с голубым оттенком. Это предопределено легкосгораемым углеродом и угарным газом, который и придает огоньку этот голубой оттенок. Соли натрия, которыми наделена древесина, придают огню желто-оранжевый оттенок, которым пылает обыкновенный костер или спички. Если посыпать конфорку плиты обычной солью, то можно получить тот же самый колер. Зеленый цвет огню придает медь. При очень высокой концентрации меди, огонек обладает весьма ярким оттенком зеленого цвета, что фактически идентичный бесцветному белому. Такое можно наблюдать, если посыпать конфорку медной стружкой.

Также проводились эксперименты с обыкновенной газовой горелкой и разными минералами, с целью того, чтобы установить их составляющие химические вещества. Для этого минерал аккуратно берут пинцетом и подносят к огню. И, по оттенку, который принимал огонь, можно сделать выводы о разных химических добавках, которые присутствуют в элементе. Зеленый оттенок придают такие минералы, как медь, барий, фосфор, молибден, а бор и сурьма дают сине-зеленый цвет. Еще в синий цвет пламя придает селен. Красное пламя получают при добавке лития, стронция и кальция, фиолетовое получается при сгорании калия, а желто-оранжевый колер дает натрий.

Для изучения различных минералов и определения их состава применяется бунзеновская горелка, изобретенная в XIX веке Бунзеном, которая дает бесцветный окрас пламени, не мешающий ходу эксперимента.

Именно Бунзен стал основоположником методики определения химического состава вещества по цветовой палитре пламени. Конечно же, и до него были попытки провести такие опыты, но такие эксперименты не увенчались успехом, так как отсутствовала горелка. Он внедрял в огненную стихию горелки разные химические компоненты на проволоке, сделанной из платины, потому что платина никак не влияет на цвет огня и не придает ему какого-либо оттенка.

На первый взгляд может показаться, что тут не нужно какое-либо сложное химическое исследование, поднес компонент к огню – и моментально можно увидеть его состав. Однако не все так просто. В природе вещества в чистом виде встречаются весьма редко. Как правило, они включают в себя немалый набор разных примесей, которые способны изменять окраску.

Следовательно, с помощью характерных свойств молекул и атомов излучать свет определенной цветовой гаммы – был создан способ определения химического состава веществ. Такой способ определения называется спектральным анализом. Ученые изучают спектр, которое выделяет вещество. К примеру, во время горения, его сравнивают со спектрами известных компонентов, и, таким образом, устанавливают его химический состав.

Описание:

Смачивая медную пластинку в соляной кислоте и поднося к пламени горелки, замечаем интересный эффект - окрашивание пламени. Огонь переливается красивыми сине-зелеными оттенками. Зрелище довольно впечатляющее и завораживающее.

Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имело бы яркий зеленый цвет. Окислы же меди дают изумрудно-зеленое окрашивание. Например, как видно из ролика, при смачивании меди соляной кислотой пламя окрашивается в голубой цвет с зеленоватым оттенком. А прокаленные медьсодержащие соединения, смоченные в кислоте, окрашивают пламя в лазурно-голубой цвет.

Для справки: Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма.

Объяснение:

Почему пламя видимое? Или чем определяется его яркость?

Некоторое пламя почти не видно, а другое наоборот светит очень ярко. Например, водород горит почти совершенно бесцветным пламенем; пламя чистого спирта тоже светит весьма слабо, а свеча и керосиновая лампа горят ярким светящимся пламенем.

Дело в том, что большая или меньшая яркость всякого пламени зависит от присутствия в нем раскаленных твердых частичек.

В топливе в большем или меньшем количестве содержится углерод. Частички углерода, раньше чем сгореть, накаливаются, - оттого-то пламя газовой горелки, керосиновой лампы и свечи светит - т.к. его подсвечивают раскаленные частицы углерода.

Таким образом, можно и несветящееся или слабо светящееся пламя сделать ярким, обогащая его углеродом или раскаляя им негорючие вещества.

Как получить разноцветное пламя?

Для получения цветного пламени к горящему веществу прибавляют не углерод, а соли металлов, окрашивающих пламя в тот или иной цвет.

Стандартный способ окрашивания слабосветящегося газового пламени - введение в него соединений металлов в форме легколетучих солей - обычно, нитратов (соли азотной кислоты) или хлоридов (соли соляной кислоты):

желтое - соли натрия,

красное - соли стронция, кальция,

зеленое - соли цезия (или бора, в виде борноэтилового или борнометилового эфира),

голубое - соли меди (в виде хлорида).

В синий окрашивает пламя селен, а в сине-зеленый - бор.

Этой способностью горящих металлов и их летучих солей придавать определенную окраску бесцветному пламени пользуются для получения цветных огней (например, в пиротехнике).

Чем определяется цвет пламени (научным языком)

Цвет огня определяется температурой пламени и тем, какие химические вещества в нём сгорают. Высокая температура пламени дает возможность атомам перескакивать на некоторое время в более высокое энергетическое состояние. Когда атомы возвращаются в исходное состояние, они излучают свет с определённой длиной волны. Она соответствует структуре электронных оболочек данного элемента.

Любой предмет в окружающем нас мире имеет температуру, выше абсолютного нуля, а значит, испускает тепловое излучение. Даже лед, у которого отрицательная температура, является источником теплового излучения. В это трудно поверить, но это так. В природе температура -89°С не самая низкая, можно достичь ещё более низких температур, правда, пока что, в лабораторных условиях. Самая низкая температура, которая на данный момент теоретически возможна в пределах нашей вселенной - это температура абсолютного нуля и она равна -273,15°С. При такой температуре прекращается движение молекул вещества и тела полностью перестают испускать любое излучение (тепловое, ультрафиолетовое, а уж тем более видимое). Полная тьма, нет ни жизни, ни тепла. Возможно, кто-нибудь из вас знает, что цветовая температура измеряется в Кельвинах. Кто покупал себе домой энергосберегающие лампочки, тот видел надпись на упаковке: 2700К или 3500К или 4500К. Это как раз и есть цветовая температура светового излучения лампочки. Но почему измеряется в Кельвинах, и что означает Кельвин? Эта единица измерения была предложена в 1848г. Ульямом Томсоном (он же лорд Кельвин) и официально утверждена в Международной Системе единиц. В физике и науках, имеющих непосредственное отношение к физике, термодинамическую температуру измеряют как раз Кельвинах. Начало отчета температурной шкалы начинается с точки0 Кельвин , что означат -273,15 градуса Цельсия . То есть - это и есть абсолютный нуль температуры . Можно легко перевести температуру из Цельсия в Кельвин. Для этого нужно просто прибавить число 273. Например, 0°С это 273К, тогда 1°С это 274К, по аналогии, температура тела человека 36,6°С это 36,6 + 273,15 = 309,75К. Вот так всё просто получается.

Чернее чёрного

С чего всё начинается? Всё начинается с нуля, в том числе и световое излучение. Черный цвет - это отсутствие света вовсе. С точки зрения цвета, черный - это 0 интенсивности излучения, 0 насыщенности, 0 цветового тона (его просто нет), это полное отсутствие всех цветов вообще. Почему мы видим предмет черным, а потому, что он почти полностью поглощает весь падающий на него свет. Существует такое понятие как абсолютно черное тело . Абсолютно черным телом называют идеализированный объект, который поглощает всё падающее на него излучение и ничего не отражающее. Конечно же, в реальности это недостижимо и абсолютно черных тел в природе не существует. Даже те предметы, которые кажутся нам черными, на самом деле не абсолютно черные. Но можно изготовить модель почти что абсолютно черного тела. Модель представляет собой куб с полой структурой внутри, в кубе проделано небольшое отверстие, через которое внутрь куба проникают световые лучи. Конструкция чем-то похожа на скворечник. Посмотрите на рисунок 1.

Рисунок 1 - Модель абсолютно черного тела.

Свет, попадающий внутрь сквозь отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Даже если мы покрасим куб в черный цвет, отверстие будет чернее черного куба. Это отверстие и будет являться абсолютно черным телом . В прямом смысле слова, отверстие не является телом, а только лишь наглядно демонстрирует нам абсолютно черное тело.
Все объекты обладают тепловым излучением (пока их температура выше абсолютного нуля, то есть -273,15 градусов по Цельсию), но ни один объект не является идеальным тепловым излучателем. Одни объекты излучают тепло лучше, другие хуже, и всё это в зависимости от различных условий среды. Поэтому, применяют модель абсолютно черного тела. Абсолютно черное тело является идеальным тепловым излучателем . Мы можем даже увидеть цвет абсолютно черного тела, если его нагреть, и цвет, который мы увидим , будет зависеть от того, до какой температуры мы нагреем абсолютно черное тело. Мы вплотную подошли к такому понятию как цветовая температура. Посмотрите на рисунок 2.


Рисунок 2 - Цвет абсолютно черного тела в зависимости от температуры нагревания.

А) Есть абсолютно черное тело, мы его не видим вообще. Температура 0 Кельвин (-273,15 градуса Цельсия) - абсолютный нуль, полное отсутствие любого излучения.
б) Включаем «сверхмощное пламя» и начинаем нагревать наше абсолютно черное тело. Температура тела, посредством нагревания, повысилась до 273К.
в) Прошло ещё немного времени и мы уже видим слабое красное свечение абсолютно черного тела. Температура увеличилась до 800К (527°С).
г) Температура поднялась до 1300К (1027°С), тело приобрело ярко-красный цвет. Такой же цвет свечения вы можете увидеть при нагревании некоторых металлов.
д) Тело нагрелось до 2000К (1727°С), что соответствует оранжевому цвету свечения. Такой же цвет имеют раскаленные угли в костре, некоторые металлы при нагревании, пламя свечи.
е) Температура уже 2500К (2227°С). Свечение такой температуры приобретает желтый цвет. Трогать руками такое тело крайне опасно!
ж) Белый цвет - 5500К (5227°С), такой же цвет свечения у Солнца в полдень.
з) Голубой цвет свечения - 9000К (8727°С). Такую температуру путем нагреванием пламенем получить в реальности будет невозможно. Но такой порог температуры вполне достижим в термоядерных реакторах, атомных взрывах, а температура звезд во вселенной может достигать десятки и сотни тысяч Кельвин. Мы можем лишь увидеть такой же голубой оттенок света, например, у светодиодных фонарей, небесных светил или других источников света. Цвет неба в ясную погоду примерно такого же цвета.Подводя итог ко всему вышесказанному, можно дать четкое определение цветовой температуры. Цветовая температура - это температура абсолютно черного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение. Проще говоря, температура 5000К - это цвет, который приобретает абсолютно черное тело при нагревании его до 5000К. Цветовая температура оранжевого цвета - 2000К, это означает, что абсолютно черное тело необходимо нагреть до температуры 2000К, чтобы оно приобрело оранжевый цвет свечения.
Но цвет свечения раскаленного тела не всегда соответствует его температуре. Если пламя газовой плиты на кухне сине-голубого цвета, это не значит, что температура пламени свыше 9000К (8727°С). Расплавленное железо в жидком состоянии имеет оранжево-желтый оттенок цвета, что в действительности соответствует его температуре, а это примерно 2000К (1727°С).

Цвет и его температура

Чтобы представить себе как это выглядит в реальной жизни, рассмотрим цветовую температуру некоторых источников: ксеноновых автомобильных ламп на рисунке 3 и люминесцентных ламп на рисунке 4.


Рисунок 3 - Цветовая температура ксеноновых автомобильных ламп.


Рисунок 4 - Цветовая температура люминесцентных ламп.

В Википедии я нашел числовые значения цветовых температур распространенных источников света:
800 К — начало видимого темно-красного свечения раскалённых тел;
1500—2000 К — свет пламени свечи;
2200 К — лампа накаливания 40 Вт;
2800 К — лампа накаливания 100 Вт (вакуумная лампа);
3000 К — лампа накаливания 200 Вт, галогенная лампа;
3200—3250 К — типичные киносъёмочные лампы;
3400 К — солнце у горизонта;
4200 К — лампа дневного света (тёплый белый свет);
4300—4500 K — утреннее солнце и солнце в обеденное время;
4500—5000 К — ксеноновая дуговая лампа, электрическая дуга;
5000 К — солнце в полдень;
5500—5600 К — фотовспышка;
5600—7000 К — лампа дневного света;
6200 К — близкий к дневному свет;
6500 К — стандартный источник дневного белого света, близкий к полуденному солнечному свету;6500—7500 К — облачность;
7500 К — дневной свет, с большой долей рассеянного от чистого голубого неба;
7500—8500 К — сумерки;
9500 К — синее безоблачное небо на северной стороне перед восходом Солнца;
10 000 К — источник света с «бесконечной температурой», используемый в риф-аквариумах (актиниевый оттенок голубого цвета);
15 000 К — ясное голубое небо в зимнюю пору;
20 000 К — синее небо в полярных широтах.
Цветовая температура является характеристикой источника света. Любой видимый нами цвет имеет цветовую температуру и не важно, какой это цвет: красный, малиновый, желтый, пурпурный, фиолетовый, зеленый, белый.
Труды в области изучения теплового излучения абсолютно черного тела принадлежат основоположнику квантовой физики Максу Планку. В 1931 году на VIII сессии Международной комиссии по освещению (МКО, в литературе часто пишется как CIE) была предложена цветовая модель XYZ. Данная модель представляет собой диаграмму цветности. Модель XYZ представлена на рисунке 5.

Рисунок 5 - Диаграмма цветности XYZ.

Числовые значения X и Y определяют координаты цвета на диаграмме. Координата Z определяет яркость цвета, она в данном случае не задействована, так как диаграмма представлена в двухмерном виде. Но самое интересное на этом рисунке - это кривая Планка, которая характеризует цветовую температуру цветов на диаграмме. Рассмотрим её поближе на рисунке 6.



Рисунок 6 -Кривая Планка

Кривая Планка на этом рисунке немного урезана и «слегка» перевернута, но на это можно не обращать внимание. Чтобы узнать цветовую температуру какого-либо цвета, нужно просто продолжить линию перпендикуляра до интересующей вас точки (участка цвета). Линия перпендикуляра, в свою очередь, характеризует такое понятие как смещение - степень отклонения цвета в зеленый или пурпурный. Те, кто работал с RAW-конвертерами, знают такой параметр как Tint (Оттенок) - это и есть смещение. Рисунок 7 отображает панель настройки цветовой температуры в таких RAW-конверторах как Nikon Capture NX и Adobe CameraRAW.


Рисунок 7- Панель настройки цветовой температуры у разных конвертеров.

Пора посмотреть, как определяется цветовая температура не просто отдельного цвета, а всего фотоснимка в целом. Возьмем, к примеру, деревенский пейзаж в ясный солнечный полдень. Кто имеет практический опыт в фотосъемках, знает, что цветовая температура в солнечный полдень составляет примерно 5500К. Но мало кто знает, откуда взялась эта цифра. 5500К - это цветовая температура всей сцены , т.е всего рассматриваемого изображения (картины, окружающего пространства, участка поверхности). Естественно, что изображение состоит из отдельных цветов, а у каждого цвета своя цветовая температура. Что получается: голубое небо (12000К), листва деревьев в тени (6000К), трава на поляне (2000К), разного рода растительность (3200К - 4200К). В итоге, цветовая температура всего изображения будет равна усредненному значению всех эти участков, т.е 5500К. Рисунок 8 наглядно демонстрирует это.


Рисунок 8 - Расчет цветовой температуры сцены снятой в солнечный день.

Следующий пример иллюстрирует рисунок 9.


Рисунок 9 - Расчет цветовой температуры сцены снятой на закате солнца.

На рисунке изображен красный цветочный бутончик, который как будто бы растет из пшеничной крупы. Снимок был сделан летом в 22:30, когда солнце шло на закат. В этом изображении преобладает большое количество цветов желтого и оранжевого цветового тона, хотя на заднем плане есть и голубой оттенок с цветовой температурой примерно 8500К, также есть почти чистый белый цвет с температурой 5500К. Я взял лишь 5 самых основных цветов в этом изображении, сопоставил их с диаграммой цветности и посчитал среднюю цветовую температуру всей сцены. Это, конечно же, примерно, но соответствует истине. Всего в этом изображении 272816 цветов и каждый цвет имеет свою цветовую температуру, если подсчитать среднюю для всех цветов вручную, то через пару месяцев мы сможем получить значение ещё более точное, чем подсчитал я. А можно написать программу для расчета и получить ответ гораздо быстрее. Идем дальше: рисунок 10.


Рисунок 10 - Расчет цветовой температуры других источников освещения

Ведущие шоу-программы решили не грузить нас расчетами цветовой температуры и сделали всего два источника освещения: прожектор, испускающий бело-зеленый яркий свет и прожектор, который светит красным светом, и всё это дело разбавили дымом….а, ну да - и поставили ведущего на передний план. Дым прозрачный, поэтому с легкостью пропускает красный свет прожектора и сам становится красный, а температура нашего красного цвета, согласно диаграмме - 900К. Температура второго прожектора - 5700К. Среднее между ними - 3300К Остальные участки изображения можно в расчет не брать - они почти черные, а такой цвет даже не попадает на кривую Планка на диаграмме, ведь видимое излучение раскаленных тел начинается примерно с 800К (красный цвет). Чисто теоретически, можно предположить и даже подсчитать температуру для темных цветов, но её значение будет пренебрежимо мало по сравнению с теми же 5700К.
И последнее изображение на рисунке 11.


Рисунок 11 - Расчет цветовой температуры сцены снятой в вечернее время.

Снимок сделан летним вечером после захода солнца. Цветовая температура неба располагается в районе синего цветового тона на диаграмме, что согласно кривой Планка, соответствует температуре примерно 17000К. Прибрежная растительность зеленого цвета имеет цветовую температуру примерно 5000К, а песок с водорослями имеет цветовую температуру где-то 3200К. Среднее значение всех этих температур примерно 8400К.

Баланс белого

С настройками баланса белого особенно хорошо знакомы любители и профессионалы занимающиеся видео и фотосъемками. В меню каждой, даже самой простой мыльницы-фотокамеры, есть возможность настроить этот параметр. Значки режимов настройки баланса белого выглядят примерно так, как показано на рисунке 12.


Рисунок 12 - Режимы настройки баланса белого в фотокамере (видеокамере).

Сразу следует сказать, что белый цвет объектов можно получить, если использовать источник света с цветовой температурой 5500К (это может быть солнечный свет, фотовспышка, другие искусственные осветители) и если сами рассматриваемые объекты белого цвета (отражают всё излучение видимого света). В остальных случаях белый цвет может быть лишь приближен к белому. Посмотрите на рисунок 13. На нем изображена та самая диаграмма цветности XYZ, которую мы недавно рассматривали, а в центре диаграммы помечена крестиком точка белого цвета.

Рисунок 13 - Точка белого цвета.

Отмеченная точка имеет цветовую температуру 5500К и как истинный белый цвет – она является суммой всех цветов спектра. Координаты у неё x = 0,33 и y = 0,33. Эта точка называется точкой равных энергий . Точка белого цвета. Естественно, если цветовая температура источника освещения 2700К, точка белого здесь и рядом не стоит, о каком уж тут белом цвете можно говорить? Там белых цветов никогда не будет! Белыми в данном случае могут быть только блики. Пример такого случая приведен на рисунке 14.


Рисунок 14 – Различная цветовая температура.

Баланс белого цвета – это установка значения цветовой температуры для всего изображения. При правильной установке вы получите цвета соответствующие тому изображению, которое вы видите. Если у получившегося снимка преобладают неестественные синие и голубые цветовые тона, значит, цвета «недостаточно нагреты», установлена слишком низкая цветовая температура сцены, необходимо её повысить. Если же на всём снимке преобладает красный тон – цвета «перегреты», установлена слишком высокая температура, необходимо её понизить. Пример тому - рисунок 15.


Рисунок 15 – Пример правильной и неправильной установки цветовой температуры

Цветовая температура всей сцены рассчитывается как средняя температура всех цветов данного изображения, поэтому в случае смешанных источников освещения или сильно отличающихся по цветовому тону цветов, фотокамера рассчитает среднюю температуру, что не всегда оказывается верно.
Пример одного такого некорректного расчета продемонстрирован на рисунке 16.


Рисунок 16 – Неизбежная неточность в установке цветовой температуры

Фотокамера не способна воспринимать резко отличающиеся яркости отдельных элементов изображения и их цветовую температуру так же, как зрение человека. Поэтому, чтобы сделать изображение почти таким же, как вы видели во время съемки, вам придется его корректировать в ручную в соответствии с вашим зрительным восприятием.

Эта статья больше предназначена для тех, кто ещё недостаточно хорошо знаком с понятием цветовой температуры и хотел бы узнать больше. Статья не содержит сложных математических формул и точных определений некоторых физический терминов. Благодаря вашим замечаниям, которые вы написали в комментариях, я внес небольшие поправки в некоторые абзацы статьи. Прощу прощения, за допущенные неточности.

В большинстве случаев пламя камина или костра бывает желто-оранжевым из-за содержащихся в дровах солей. Добавляя определенные химические вещества, можно изменить цвет пламени, чтобы он больше соответствовал особому событию или чтобы просто полюбоваться сменой цветов. Чтобы изменить цвет пламени, вы можете добавить определенные химические соединения непосредственно в огонь, приготовить парафиновые лепешки с химикатами или замочить дрова в специальном химическом растворе. Несмотря на все то удовольствие, которое может подарить вам процесс создания цветного пламени, обязательно соблюдайте особую осторожность, когда работаете с огнем и химическими веществами.

Шаги

Выбор подходящих химикатов

    Выберите цвет (или цвета) пламени. Несмотря на то, что у вас есть возможность выбирать среди целого набора различных оттенков пламени, необходимо решить, какие из них вам наиболее важны, чтобы вы могли подобрать подходящие химические вещества. Пламя можно сделать синим, бирюзовым, красным, розовым, зеленым, оранжевым, фиолетовым, желтым или белым.

    Определите необходимые вам химические реагенты на основании того цвета, который они создают при горении. Чтобы окрасить пламя в нужный цвет, необходимо подобрать подходящие химикаты. Они должны быть порошковыми и не включать в себя хлораты, нитраты или перманганаты, образующие при горении вредные побочные продукты.

    • Чтобы создать синее пламя, возьмите хлорид меди или хлористый кальций.
    • Чтобы сделать пламя бирюзовым, используйте сульфат меди.
    • Для получения красного пламени возьмите хлорид стронция.
    • Для создания розового пламени используйте хлорид лития.
    • Чтобы сделать пламя светло-зеленого цвета, используйте буру.
    • Чтобы получить зеленое пламя, возьмите квасцы.
    • Чтобы создать оранжевое пламя, используйте хлорид натрия.
    • Для создания пламени фиолетового цвета возьмите хлористый калий.
    • Для получения желтого пламени используйте углекислый натрий.
    • Чтобы создать белое пламя, возьмите сернокислый магний.
  1. Купите нужные химические вещества. Некоторые из окрашивающих пламя реагентов относятся к широко используемым в хозяйстве веществам, поэтому их можно найти в продуктовом, хозяйственном или садовом магазине. Другие химикаты можно приобрести в специализированных магазинах химических реактивов или купить в интернет-магазинах.

    • Сульфат меди используется в сантехнических целях для уничтожения корней деревьев, которые могут повредить трубы, поэтому его можно поискать в хозяйственных магазинах.
    • Хлорид натрия – это обычная поваренная соль, поэтому ее можно купить в продуктовом магазине.
    • Хлористый калий используется как средство для смягчения воды, поэтому его также можно поискать в хозяйственных магазинах.
    • Бура нередко используется для стирки, поэтому ее можно найти в отделе моющих средств некоторых супермаркетов.
    • Сернокислый магний содержится в соли Эпсома, которую можно поспрашивать в аптеках.
    • Хлорид меди, хлористый кальций, хлорид лития, углекислый натрий и квасцы следует приобретать в магазинах химических реагентов или через интернет-магазины.

Изготовление парафиновых лепешек

  1. Растопите парафин на водяной бане. Поставьте термостойкую миску на кастрюлю с медленно кипящей водой. Добавьте в миску несколько кусочков парафина и дайте им полностью растять.

    • Можно использовать покупной кусковой или баночный парафин (или воск) либо остатки парафина от старых свечек.
    • Не топите парафин на открытом пламени, иначе вы можете устроить пожар.
  2. Добавьте в парафин химикат и размешайте. Как только парафин полностью растает, снимите его с водяной бани. Добавьте 1–2 столовые ложки (15–30 г) химического реагента и тщательно размешайте до получения однородного состава.

    • Если вы не хотите добавлять химикаты напрямую в парафин, их можно предварительно завернуть в использованный абсорбирующий материал и потом положить полученный сверток в емкость, которую вы собираетесь залить парафином.
  3. Дайте парафиновому составу немного остыть и разлейте его по бумажным чашечкам. После приготовления парафиновой смеси с химикатом, дайте ей остыть в течение 5–10 минут. Пока смесь все еще будет жидкой, разлейте ее по бумажным чашечкам для кексов, чтобы приготовить парафиновые лепешки.

    • Для приготовления парафиновых лепешек можно использовать как небольшие бумажные чашечки, так и картонную упаковку от яиц.
  4. Позвольте парафину застыть. После того как парафин будет разлит по формам, дайте ему постоять до затвердения. На полное охлаждение уйдет примерно час времени.

    Подбросьте парафиновую лепешку в огонь. Когда парафиновые лепешки застынут, освободите одну из них от упаковки. Подбросьте лепешку в самую жаркую часть костра. По мере того как воск будет плавиться, пламя начнет менять свой цвет.

    • В огонь можно добавлять сразу несколько парафиновых лепешек с разными химическими добавками, только располагайте их в разных местах.
    • Парафиновые лепешки хорошо подходят для костров и каминов.

Обработка древесины химикатами

  1. Соберите сухие и легкие материалы для костра. Вам подойдут такие материалы древесного происхождения, как щепки, обрезки пиломатериалов, сосновые шишки и хворост. Также можно использовать скрученные газеты.

  2. Растворите химикат в воде. Добавьте по 450 г выбранного химиката на каждые 4 л воды, используйте для этого пластиковую емкость. Тщательно размешайте жидкость, чтобы ускорить растворение химиката. Для достижения наилучших результатов добавляйте в воду только один вид химического реагента.

    • Можно также взять стеклянную емкость, но избегайте применения металлической тары, которая может вступить в реакцию с химическими веществами. Соблюдайте осторожность, чтобы не уронить и не разбить используемые стеклянные емкости вблизи от очага костра или камина.
    • Обязательно наденьте защитные очки, маску (или респиратор) и резиновые перчатки, когда будете готовить химический раствор.
    • Лучше всего готовить раствор на открытом воздухе, так как некоторые виды химикатов могут оставлять пятна на рабочей поверхности или выделять вредные испарения.
  3. Обязательно используйте защитные средства, включая защитные очки и перчатки, когда создаете окрашенное пламя.
  4. Предупреждения

  • Осторожно обращайтесь со всеми химикатами и соблюдайте инструкции, приведенные на их упаковках. Даже вполне безобидные вещества (как поваренная соль) в больших концентрациях могут вызвать раздражение кожи и химические ожоги.
  • Держите опасные химикаты в герметичных контейнерах из пластика или стекла. Не допускайте к ним детей и домашних питомцев.
  • При добавлении химикатов непосредственно в камин в первую очередь убедитесь в наличии хорошей вентиляции, чтобы ваш дом не наполнился едким химическим дымом.
  • Огонь – не игрушка и никогда не должен расцениваться как таковой. Без слов ясно, что огонь опасен и быстро может выйти из-под контроля. Обязательно держите под рукой огнетушитель или емкость с достаточным количеством воды.


Понравилась статья? Поделитесь с друзьями!