Почему зоны пламени имеют разные цвета. Большая энциклопедия нефти и газа


18.12.2017 08:06 772

Почему огонь бывает разных цветов?

Огонь всегда был для людей источником света и тепла. Его завораживающее свечение привлекало человека своей таинственностью с давних времён. Многие народы совершали у огня разные ритуалы. Известно, что огонь - это совокупность раскалённых газов, которые выделяются в результате нагревания каких-нибудь горючих материалов, например дерева.

Сидя у костра, и наблюдая за его ярким пламенем, создаётся впечатление, что огонь бывает только двух цветов: красного и жёлтого. Но на самом деле это так. Огонь может быть разных цветов. Почему так происходит?

Цвет пламени зависит от состава горящего материала. Во время процесса горения происходят химические реакции, придающие пламени разные цвета. Вы наверное замечали, ребята, что при включении газовой плиты огонь на конфорках светится голубым цветом. Это происходит потому, что газ во время горения распадается на водород и углерод. При этом образуется углекислый газ, который придаёт пламени голубой цвет.

Если пламя сияет зелёным цветом, значит в горящем материале присутствует медь или фосфор. Жёлтый цвет огня возникает при горении соли. При сжигании древесины пламя также будет иметь жёлтый оттенок, поскольку соль присутствует и в дереве.

Также огонь может иметь красный оттенок, если в составе горящего материала присутствует литий или калий.

Вот мы и узнали ответ на интересующий нас вопрос. Но следует помнить, ребята, что огонь представляет для человека большую опасность. Поэтому, пользоваться огнём без присутствия взрослых категорически запрещено.


Любой предмет в окружающем нас мире имеет температуру, выше абсолютного нуля, а значит, испускает тепловое излучение. Даже лед, у которого отрицательная температура, является источником теплового излучения. В это трудно поверить, но это так. В природе температура -89°С не самая низкая, можно достичь ещё более низких температур, правда, пока что, в лабораторных условиях. Самая низкая температура, которая на данный момент теоретически возможна в пределах нашей вселенной - это температура абсолютного нуля и она равна -273,15°С. При такой температуре прекращается движение молекул вещества и тела полностью перестают испускать любое излучение (тепловое, ультрафиолетовое, а уж тем более видимое). Полная тьма, нет ни жизни, ни тепла. Возможно, кто-нибудь из вас знает, что цветовая температура измеряется в Кельвинах. Кто покупал себе домой энергосберегающие лампочки, тот видел надпись на упаковке: 2700К или 3500К или 4500К. Это как раз и есть цветовая температура светового излучения лампочки. Но почему измеряется в Кельвинах, и что означает Кельвин? Эта единица измерения была предложена в 1848г. Ульямом Томсоном (он же лорд Кельвин) и официально утверждена в Международной Системе единиц. В физике и науках, имеющих непосредственное отношение к физике, термодинамическую температуру измеряют как раз Кельвинах. Начало отчета температурной шкалы начинается с точки0 Кельвин , что означат -273,15 градуса Цельсия . То есть - это и есть абсолютный нуль температуры . Можно легко перевести температуру из Цельсия в Кельвин. Для этого нужно просто прибавить число 273. Например, 0°С это 273К, тогда 1°С это 274К, по аналогии, температура тела человека 36,6°С это 36,6 + 273,15 = 309,75К. Вот так всё просто получается.

Чернее чёрного

С чего всё начинается? Всё начинается с нуля, в том числе и световое излучение. Черный цвет - это отсутствие света вовсе. С точки зрения цвета, черный - это 0 интенсивности излучения, 0 насыщенности, 0 цветового тона (его просто нет), это полное отсутствие всех цветов вообще. Почему мы видим предмет черным, а потому, что он почти полностью поглощает весь падающий на него свет. Существует такое понятие как абсолютно черное тело . Абсолютно черным телом называют идеализированный объект, который поглощает всё падающее на него излучение и ничего не отражающее. Конечно же, в реальности это недостижимо и абсолютно черных тел в природе не существует. Даже те предметы, которые кажутся нам черными, на самом деле не абсолютно черные. Но можно изготовить модель почти что абсолютно черного тела. Модель представляет собой куб с полой структурой внутри, в кубе проделано небольшое отверстие, через которое внутрь куба проникают световые лучи. Конструкция чем-то похожа на скворечник. Посмотрите на рисунок 1.

Рисунок 1 - Модель абсолютно черного тела.

Свет, попадающий внутрь сквозь отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Даже если мы покрасим куб в черный цвет, отверстие будет чернее черного куба. Это отверстие и будет являться абсолютно черным телом . В прямом смысле слова, отверстие не является телом, а только лишь наглядно демонстрирует нам абсолютно черное тело.
Все объекты обладают тепловым излучением (пока их температура выше абсолютного нуля, то есть -273,15 градусов по Цельсию), но ни один объект не является идеальным тепловым излучателем. Одни объекты излучают тепло лучше, другие хуже, и всё это в зависимости от различных условий среды. Поэтому, применяют модель абсолютно черного тела. Абсолютно черное тело является идеальным тепловым излучателем . Мы можем даже увидеть цвет абсолютно черного тела, если его нагреть, и цвет, который мы увидим , будет зависеть от того, до какой температуры мы нагреем абсолютно черное тело. Мы вплотную подошли к такому понятию как цветовая температура. Посмотрите на рисунок 2.


Рисунок 2 - Цвет абсолютно черного тела в зависимости от температуры нагревания.

А) Есть абсолютно черное тело, мы его не видим вообще. Температура 0 Кельвин (-273,15 градуса Цельсия) - абсолютный нуль, полное отсутствие любого излучения.
б) Включаем «сверхмощное пламя» и начинаем нагревать наше абсолютно черное тело. Температура тела, посредством нагревания, повысилась до 273К.
в) Прошло ещё немного времени и мы уже видим слабое красное свечение абсолютно черного тела. Температура увеличилась до 800К (527°С).
г) Температура поднялась до 1300К (1027°С), тело приобрело ярко-красный цвет. Такой же цвет свечения вы можете увидеть при нагревании некоторых металлов.
д) Тело нагрелось до 2000К (1727°С), что соответствует оранжевому цвету свечения. Такой же цвет имеют раскаленные угли в костре, некоторые металлы при нагревании, пламя свечи.
е) Температура уже 2500К (2227°С). Свечение такой температуры приобретает желтый цвет. Трогать руками такое тело крайне опасно!
ж) Белый цвет - 5500К (5227°С), такой же цвет свечения у Солнца в полдень.
з) Голубой цвет свечения - 9000К (8727°С). Такую температуру путем нагреванием пламенем получить в реальности будет невозможно. Но такой порог температуры вполне достижим в термоядерных реакторах, атомных взрывах, а температура звезд во вселенной может достигать десятки и сотни тысяч Кельвин. Мы можем лишь увидеть такой же голубой оттенок света, например, у светодиодных фонарей, небесных светил или других источников света. Цвет неба в ясную погоду примерно такого же цвета.Подводя итог ко всему вышесказанному, можно дать четкое определение цветовой температуры. Цветовая температура - это температура абсолютно черного тела, при которой оно испускает излучение того же цветового тона, что и рассматриваемое излучение. Проще говоря, температура 5000К - это цвет, который приобретает абсолютно черное тело при нагревании его до 5000К. Цветовая температура оранжевого цвета - 2000К, это означает, что абсолютно черное тело необходимо нагреть до температуры 2000К, чтобы оно приобрело оранжевый цвет свечения.
Но цвет свечения раскаленного тела не всегда соответствует его температуре. Если пламя газовой плиты на кухне сине-голубого цвета, это не значит, что температура пламени свыше 9000К (8727°С). Расплавленное железо в жидком состоянии имеет оранжево-желтый оттенок цвета, что в действительности соответствует его температуре, а это примерно 2000К (1727°С).

Цвет и его температура

Чтобы представить себе как это выглядит в реальной жизни, рассмотрим цветовую температуру некоторых источников: ксеноновых автомобильных ламп на рисунке 3 и люминесцентных ламп на рисунке 4.


Рисунок 3 - Цветовая температура ксеноновых автомобильных ламп.


Рисунок 4 - Цветовая температура люминесцентных ламп.

В Википедии я нашел числовые значения цветовых температур распространенных источников света:
800 К — начало видимого темно-красного свечения раскалённых тел;
1500—2000 К — свет пламени свечи;
2200 К — лампа накаливания 40 Вт;
2800 К — лампа накаливания 100 Вт (вакуумная лампа);
3000 К — лампа накаливания 200 Вт, галогенная лампа;
3200—3250 К — типичные киносъёмочные лампы;
3400 К — солнце у горизонта;
4200 К — лампа дневного света (тёплый белый свет);
4300—4500 K — утреннее солнце и солнце в обеденное время;
4500—5000 К — ксеноновая дуговая лампа, электрическая дуга;
5000 К — солнце в полдень;
5500—5600 К — фотовспышка;
5600—7000 К — лампа дневного света;
6200 К — близкий к дневному свет;
6500 К — стандартный источник дневного белого света, близкий к полуденному солнечному свету;6500—7500 К — облачность;
7500 К — дневной свет, с большой долей рассеянного от чистого голубого неба;
7500—8500 К — сумерки;
9500 К — синее безоблачное небо на северной стороне перед восходом Солнца;
10 000 К — источник света с «бесконечной температурой», используемый в риф-аквариумах (актиниевый оттенок голубого цвета);
15 000 К — ясное голубое небо в зимнюю пору;
20 000 К — синее небо в полярных широтах.
Цветовая температура является характеристикой источника света. Любой видимый нами цвет имеет цветовую температуру и не важно, какой это цвет: красный, малиновый, желтый, пурпурный, фиолетовый, зеленый, белый.
Труды в области изучения теплового излучения абсолютно черного тела принадлежат основоположнику квантовой физики Максу Планку. В 1931 году на VIII сессии Международной комиссии по освещению (МКО, в литературе часто пишется как CIE) была предложена цветовая модель XYZ. Данная модель представляет собой диаграмму цветности. Модель XYZ представлена на рисунке 5.

Рисунок 5 - Диаграмма цветности XYZ.

Числовые значения X и Y определяют координаты цвета на диаграмме. Координата Z определяет яркость цвета, она в данном случае не задействована, так как диаграмма представлена в двухмерном виде. Но самое интересное на этом рисунке - это кривая Планка, которая характеризует цветовую температуру цветов на диаграмме. Рассмотрим её поближе на рисунке 6.



Рисунок 6 -Кривая Планка

Кривая Планка на этом рисунке немного урезана и «слегка» перевернута, но на это можно не обращать внимание. Чтобы узнать цветовую температуру какого-либо цвета, нужно просто продолжить линию перпендикуляра до интересующей вас точки (участка цвета). Линия перпендикуляра, в свою очередь, характеризует такое понятие как смещение - степень отклонения цвета в зеленый или пурпурный. Те, кто работал с RAW-конвертерами, знают такой параметр как Tint (Оттенок) - это и есть смещение. Рисунок 7 отображает панель настройки цветовой температуры в таких RAW-конверторах как Nikon Capture NX и Adobe CameraRAW.


Рисунок 7- Панель настройки цветовой температуры у разных конвертеров.

Пора посмотреть, как определяется цветовая температура не просто отдельного цвета, а всего фотоснимка в целом. Возьмем, к примеру, деревенский пейзаж в ясный солнечный полдень. Кто имеет практический опыт в фотосъемках, знает, что цветовая температура в солнечный полдень составляет примерно 5500К. Но мало кто знает, откуда взялась эта цифра. 5500К - это цветовая температура всей сцены , т.е всего рассматриваемого изображения (картины, окружающего пространства, участка поверхности). Естественно, что изображение состоит из отдельных цветов, а у каждого цвета своя цветовая температура. Что получается: голубое небо (12000К), листва деревьев в тени (6000К), трава на поляне (2000К), разного рода растительность (3200К - 4200К). В итоге, цветовая температура всего изображения будет равна усредненному значению всех эти участков, т.е 5500К. Рисунок 8 наглядно демонстрирует это.


Рисунок 8 - Расчет цветовой температуры сцены снятой в солнечный день.

Следующий пример иллюстрирует рисунок 9.


Рисунок 9 - Расчет цветовой температуры сцены снятой на закате солнца.

На рисунке изображен красный цветочный бутончик, который как будто бы растет из пшеничной крупы. Снимок был сделан летом в 22:30, когда солнце шло на закат. В этом изображении преобладает большое количество цветов желтого и оранжевого цветового тона, хотя на заднем плане есть и голубой оттенок с цветовой температурой примерно 8500К, также есть почти чистый белый цвет с температурой 5500К. Я взял лишь 5 самых основных цветов в этом изображении, сопоставил их с диаграммой цветности и посчитал среднюю цветовую температуру всей сцены. Это, конечно же, примерно, но соответствует истине. Всего в этом изображении 272816 цветов и каждый цвет имеет свою цветовую температуру, если подсчитать среднюю для всех цветов вручную, то через пару месяцев мы сможем получить значение ещё более точное, чем подсчитал я. А можно написать программу для расчета и получить ответ гораздо быстрее. Идем дальше: рисунок 10.


Рисунок 10 - Расчет цветовой температуры других источников освещения

Ведущие шоу-программы решили не грузить нас расчетами цветовой температуры и сделали всего два источника освещения: прожектор, испускающий бело-зеленый яркий свет и прожектор, который светит красным светом, и всё это дело разбавили дымом….а, ну да - и поставили ведущего на передний план. Дым прозрачный, поэтому с легкостью пропускает красный свет прожектора и сам становится красный, а температура нашего красного цвета, согласно диаграмме - 900К. Температура второго прожектора - 5700К. Среднее между ними - 3300К Остальные участки изображения можно в расчет не брать - они почти черные, а такой цвет даже не попадает на кривую Планка на диаграмме, ведь видимое излучение раскаленных тел начинается примерно с 800К (красный цвет). Чисто теоретически, можно предположить и даже подсчитать температуру для темных цветов, но её значение будет пренебрежимо мало по сравнению с теми же 5700К.
И последнее изображение на рисунке 11.


Рисунок 11 - Расчет цветовой температуры сцены снятой в вечернее время.

Снимок сделан летним вечером после захода солнца. Цветовая температура неба располагается в районе синего цветового тона на диаграмме, что согласно кривой Планка, соответствует температуре примерно 17000К. Прибрежная растительность зеленого цвета имеет цветовую температуру примерно 5000К, а песок с водорослями имеет цветовую температуру где-то 3200К. Среднее значение всех этих температур примерно 8400К.

Баланс белого

С настройками баланса белого особенно хорошо знакомы любители и профессионалы занимающиеся видео и фотосъемками. В меню каждой, даже самой простой мыльницы-фотокамеры, есть возможность настроить этот параметр. Значки режимов настройки баланса белого выглядят примерно так, как показано на рисунке 12.


Рисунок 12 - Режимы настройки баланса белого в фотокамере (видеокамере).

Сразу следует сказать, что белый цвет объектов можно получить, если использовать источник света с цветовой температурой 5500К (это может быть солнечный свет, фотовспышка, другие искусственные осветители) и если сами рассматриваемые объекты белого цвета (отражают всё излучение видимого света). В остальных случаях белый цвет может быть лишь приближен к белому. Посмотрите на рисунок 13. На нем изображена та самая диаграмма цветности XYZ, которую мы недавно рассматривали, а в центре диаграммы помечена крестиком точка белого цвета.

Рисунок 13 - Точка белого цвета.

Отмеченная точка имеет цветовую температуру 5500К и как истинный белый цвет – она является суммой всех цветов спектра. Координаты у неё x = 0,33 и y = 0,33. Эта точка называется точкой равных энергий . Точка белого цвета. Естественно, если цветовая температура источника освещения 2700К, точка белого здесь и рядом не стоит, о каком уж тут белом цвете можно говорить? Там белых цветов никогда не будет! Белыми в данном случае могут быть только блики. Пример такого случая приведен на рисунке 14.


Рисунок 14 – Различная цветовая температура.

Баланс белого цвета – это установка значения цветовой температуры для всего изображения. При правильной установке вы получите цвета соответствующие тому изображению, которое вы видите. Если у получившегося снимка преобладают неестественные синие и голубые цветовые тона, значит, цвета «недостаточно нагреты», установлена слишком низкая цветовая температура сцены, необходимо её повысить. Если же на всём снимке преобладает красный тон – цвета «перегреты», установлена слишком высокая температура, необходимо её понизить. Пример тому - рисунок 15.


Рисунок 15 – Пример правильной и неправильной установки цветовой температуры

Цветовая температура всей сцены рассчитывается как средняя температура всех цветов данного изображения, поэтому в случае смешанных источников освещения или сильно отличающихся по цветовому тону цветов, фотокамера рассчитает среднюю температуру, что не всегда оказывается верно.
Пример одного такого некорректного расчета продемонстрирован на рисунке 16.


Рисунок 16 – Неизбежная неточность в установке цветовой температуры

Фотокамера не способна воспринимать резко отличающиеся яркости отдельных элементов изображения и их цветовую температуру так же, как зрение человека. Поэтому, чтобы сделать изображение почти таким же, как вы видели во время съемки, вам придется его корректировать в ручную в соответствии с вашим зрительным восприятием.

Эта статья больше предназначена для тех, кто ещё недостаточно хорошо знаком с понятием цветовой температуры и хотел бы узнать больше. Статья не содержит сложных математических формул и точных определений некоторых физический терминов. Благодаря вашим замечаниям, которые вы написали в комментариях, я внес небольшие поправки в некоторые абзацы статьи. Прощу прощения, за допущенные неточности.

Температура огня заставляет в новом свете увидеть привычные вещи - вспыхнувшую белым спичку, голубое свечение горелки газовой печки на кухне, оранжево-красные язычки над пылающим деревом. Человек не обращает внимания на огонь, пока не обожжёт кончики пальцев. Или не спалит картошку на сковороде. Или не прожжёт подошву кроссовок, сохнущих над костром.

Когда первая боль, испуг и разочарование проходят, наступает время философских размышлений. О природе, цветовой гамме, температуре огня.

Горит, как спичка

Кратко о строении спички. Она состоит из палочки и головки. Палочки изготавливают из дерева, картона и хлопчатобумажного жгута, пропитанного парафином. Дерево выбирают мягких пород - тополь, сосну, осину. Сырьё для палочек называют спичечной соломкой. Чтобы избежать тления соломки, палочки пропитывают фосфорной кислотой. Российские заводы мастерят соломку из осины.

Головка спички проста по форме, но сложна по химическому составу. Темно-коричневая голова спички содержит семь компонентов: окислители - бертолетова соль и дихромат калия; стекляннюу пыль, сурик свинцовый, серу, цинковые белила.

Головка спички при трении воспламеняется, нагреваясь до полутора тысяч градусов. Порог воспламенения, в градусах Цельсия:

  • тополь - 468;
  • осина - 612;
  • сосна - 624.

Температура огня спички равна температуре Поэтому белая вспышка серной головки сменяется желто-оранжевым язычком спички.

Если пристально разглядывать горящую спичку, то взгляду предстают три зоны пламени. Нижняя - холодная голубая. Средняя в полтора раза теплее. Верхняя - горячая зона.

Огненный художник

При слове «костёр» вспыхивают не менее ярко ностальгические воспоминания: дым костра, создающий доверительную обстановку; красные и желтые огни, летящие к ультрамариновому небу; переливы язычков с голубого до рубиново-красного цвета; багровые остывающие угли, в которых печётся «пионерская» картошка.

Изменяющийся колер пылающего дерева сообщает о колебаниях температуры огня в костре. Тление дерева (потемнение) начинается со 150°. Возгорание (задымление) происходит в интервале 250-300°. При одинаковом поступлении кислорода породы при несовпадающих температурах. Соответственно, градус костра тоже будет отличаться. Берёза горит при 800 градусах, ольха - при 522°, а ясень и бук - при 1040°.

Но цвет огня также определяется химическим составом горящего вещества. Желтый и оранжевый вносят соли натрия. Химический состав целлюлозы содержит и соли натрия, и соли калия, придающие пылающим углям дерева красный оттенок. Романтические в древесном костре возникают из-за недостатка кислорода, когда вместо СО 2 образуется СО - угарный газ.

Энтузиасты научных опытов измеряют температуру огня в костре прибором под названием пирометр. Изготовляют три типа пирометров: оптические, радиационные, спектральные. Это бесконтактные приборы, разрешающие оценивать мощность теплового излучения.

Изучаем огонь на собственной кухне

Кухонные газовые плиты работают на двух видах топлива:

  1. Магистральный природный газ метан.
  2. Пропан-бутановая сжиженная смесь из баллонов и газгольдеров.

Химический состав топлива определяет температуру огня газовой плиты. Метан, сгорая, образует огонь мощностью 900 градусов в верхней точке.

Сжигание сжиженной смеси даёт жар до 1950°.

Внимательный наблюдатель отметит неравномерность раскраски язычков горелки газовой плиты. Внутри огненного факела происходит деление на три зоны:

  • Тёмный участок, расположенный возле конфорки: здесь нет горения из-за недостатка кислорода, а температура зоны равна 350°.
  • Яркий участок, лежащий в центре факела: горящий газ разогревается до 700°, но топливо сгорает не до конца из-за недостатка окислителя.
  • Полупрозрачный верхний участок: достигает температуры 900°, и сгорание газа полноценное.

Цифры температурных зон огневого факела приведены для метана.

Правила безопасности при огневых мероприятиях

Разжигая спички, плиту, позаботьтесь о вентиляции помещения. Обеспечьте приток кислорода к топливу.

Не пытайтесь самостоятельно ремонтировать газовое оборудование. Газ не терпит дилетантов.

Хозяйки отмечают, что горелки светятся голубым цветом, но иногда огонь становится оранжевым. Это не глобальное изменение температуры. Изменение цвета связано с изменением состава топлива. Чистый метан горит без цвета и без запаха. В целях безопасности в бытовой газ добавляют серу, которая при сгорании окрашивает газ в голубые оттенки и сообщает продуктам сгорания характерный запах.

Появление оранжевых и желтых оттенков в огне конфорки сообщает о необходимости профилактических манипуляций с плитой. Мастера прочистят оборудование, удалят пыль и сажу, горение которых и изменяет привычный цвет огня.

Иногда огонь в горелке становится красным. Это сигнал опасного содержания угарного газа в Поступления кислорода к топливу настолько мало, что плита даже тухнет. Угарный газ без вкуса и запаха, и человек рядом с источником выделения вредного вещества заметит слишком поздно, что отравился. Поэтому красный цвет газа требует немедленного вызова мастеров для профилактики и наладки оборудования.

В лабораторных условиях можно добиться бесцветного огня, который можно определить лишь по колебанию воздуха в области горения. Бытовой же огонь всегда "цветной". Цвет огня определяется, главным образом, температурой пламени и тем, какие химические вещества в нем сгорают. Высокая температура пламени дает возможность атомам перескакивать на некоторое время в более высокое энергетическое состояние. Когда атомы возвращаются в исходное состояние, они излучают свет с определённой длиной волны. Она соответствует структуре электронных оболочек данного элемента.

Знаменитый голубой огонек, который можно видеть при горении природного газа, обусловлен угарным газом, который и дает этот оттенок. Угарный газ, молекула которого состоит из одного атома кислорода и одного атома углерода, является побочным продуктом горения природного газа.

Попробуйте посыпать на конфорку газовой плиты немножко поваренной соли - в пламени появятся желтые язычки. Такое желто-оранжевое пламя дают соли натрия (а поваренная соль, напомним, это хлорид натрия). Такими солями богата древесина, поэтому обычный лесной костер или бытовые спички горят желтым пламенем.

Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имеет яркий зеленый цвет, практически идентичный белому.

Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма. В синий окрашивает пламя селен, а в сине-зеленый - бор. Красное пламя даст литий, стронций и кальций, фиолетовое – калий, желто-оранжевый оттенок выходит при сгорании натрий.

Температура пламени при горении некоторых веществ:

А знаешь ли ты...

Благодаря свойству атомов и молекул испускать свет определенного цвета был разработан метод определения состава веществ, который называется спектральным анализом . Ученые исследуют спектр, который испускает вещество, например, при горении, сравнивают его со спектрами известных элементов, и, таким образом, определяют его состав.

Всегда кажется, что огонь имеет два оттенка – красный и желтый. Но если присмотреться внимательно, то можно приметить, что цветность огня различается от того, какой предмет горит. Входящие в его состав вещества и выдают свои цвета пламени. Итак, почему огонь бывает разного цвета, от чего зависит цвет пламени?

Что такое пламя и почему огонь бывает разного цвета

Языки пламени представлены в виде раскаленных газов, иногда содержащих плазму и твердые элементы, в которых совершаются физико-химические перевоплощения реагентных элементов, вызывающие свечение, выделение тепла, самостоятельный нагрев.

Газообразная среда пламени состоит из заряженных ионов и радикалов, что объясняет возможность электропроводности пламени и его взаимодействие с электромагнитными полями. По такому принципу производятся приборы, обладающие способностью при помощи электромагнитного излучения приглушать пламя, оторвать его от горючих материалов и даже изменить форму.

Причины разноцветности пламени

Включив газовую конфорку и поджигая выходящий газ, мы видим голубоватый огонь? В процессе горения газ распадается на кислород и углерод, выделяя при этом угарный газ, который и является причиной голубого цвета.


подожженная простая пищевая соль – в огне выдает желтые и красные цвета? В состав соли входит хлорид натрия, при горении создающий желто-оранжевые языки пламени. Любой деревянный предмет или костер из дров будут гореть таким же цветом, так как в составе древесного материала находится большое количество подобных солей.


Есть у огня и зеленые оттенки, ? Их появление означает то, что в горящих предметах содержатся фосфор или медь. Причем медное пламя будет ярким и слепящим, близким к белому. Причиной зеленого пламени может стать наличие в предметах горения бария, молибдена, фосфора, сурьмы. Синий цвет зависит от селена или бора.

Огонь без признаков цвета можно увидеть только в лабораторных условиях. Понять, что что-то горит, возможно только по легкому колебанию воздуха и выделяемому теплу.

Помните! Огонь очень опасен. Распространяется молниеносно. Никогда не играйте с огнем. Находиться рядом с огнем можно только в присутствии взрослых!

Полезно знать

  • Все газовые приборы представляют собой повышенную . По этой причине не помешает узнать некоторые признаки поломок, способы их устранения. Определять неисправности будем по цвету пламени.
  • Если ваша горелка при работе издает желтое пламя или оранжевое – это признак того, что не хватает воздушной смеси. Чтобы горение газа проходило правильно, максимально выдавала тепло, необходимо достаточное количество воздуха, который перемешивается с газом в главной горелке.
  • Нарушение баланса в смеси топлива и воздуха может произойти по разным причинам. Воздушные отверстия засорились пылью, не давая проходить воздушным потокам. Пылевые накопления, сгорая, создают желтоватый или оранжевый цвет пламени.
  • Желтизна пламени возможна и в том случае, газовое оборудование приобретено неправильно. При сгорании любого топлива выделяется угарный газ. Колонки, выдающие при работе синее пламя, выдают низкий уровень СО. Наличие оранжевого или красного огня говорят об обратном.
  • При отравлении угарными газами наблюдаются симптомы, как при гриппе – головные боли, тошнота, головокружения. Угарный газ опасен тем, что его присутствие зачастую остается незамеченным людьми, так как он не отличается наличием цвета или запаха.

Теперь вы знаете, почему огонь бывает разного цвета, от чего зависит цвет пламени. Обратите внимание: если мы наблюдаем на газовом приборе желтое, красное или оранжевое пламя – это можно считать сигналом опасности. Обнаружив это, необходимо вызвать квалифицированных специалистов, которые определят причину и устранят неисправность газового оборудования.



Понравилась статья? Поделитесь с друзьями!