Курсовая работа: Вакуумное напыление. Установка вакуумного напыления

Вакуумное напыление – принцип работы и технология вакуумного плазменного напыления. Наиболее распространенные методы вакуумного напыления. Ионно вакуумное напыление и принцип его работы. Процесс вакуумного напыления алюминия и его эффективность. Главные особенности вакуумного напыления металла и его отличие от вакуумно ионно плазменного напыления металла. Где можно окупить установку вакуумного напыления по низкой цене

Вакуумное напыление – это процесс, в котором на данном этапе нуждается большая часть современных предприятий. Используется данный метод зачастую на тех производствах, которые занимаются выпуском различной продукции, каким-то образом связанной с дальнейшей эксплуатацией.

Это может быть, как обычное оборудование, так и зубные изделия, которые также нуждаются в процессе вакуумного напыления. Как бы это странно не звучало, но именно медицинская отрасль является одним из тех направлений, где процесс вакуумного напыления используется чаще всего. Использовать в данной отрасли, его можно, как в роли улучшения свойств оборудования для работы, так и в роли покрытия различных материалов, либо же изделий.

Установка вакуумного напыления – это одна из наиболее важных составляющих данного процесса. Мало кто будет спорить с тем, что именно установка вакуумного напыления позволяет производить данный процесс, причем делать это довольно быстро. Принцип работы подобных установок максимально прост. Изначально, внутри подобных систем создается состояние первичного разрежения, которое позволяет превратить кристаллический порошок в специальную смесь, которую можно в дальнейшем наносить на разные покрытия. Далее, внутри установки значительно поднимается уровень давления, что приводи к активному образованию вакуума внутри системы. Далее, вакуум производит процесс, вспрыскивания напыления, которое сразу же оседает на нужном материале, который и будет поддаваться такой обработке.

Еще один очень важный вопрос – это надежность данного процесса. Судя по конструкции и принципу работы подобных установок, не трудно понять, что сделаны, они максимально продумано. Но нельзя исключать и вероятность поломок подобного оборудования. Но даже такая ситуация не окажется столь сложной, ведь подобное оборудование, является вполне ремонтопригодным и довольно легко поддается починке.

Методы вакуумного напыления

Учитывая тот факт, что современный рынок включает в себя огромное количество разнообразных отраслей, было принято решение, сделать сразу несколько методов вакуумного напыления. Все они уникальны и работают по совершенно разному алгоритму.

Сейчас мы рассмотрим наиболее распространенные методы вакуумного напыления:

  • Вакуумное ионно плазменное напыление
  • Вакуумное плазменное напыление
  • Вакуумное ионное напыление

Это три наиболее часто используемых вида напыления на данный момент. Большая часть предприятий, активно использует данную технологию, получая от нее максимум пользы. А это уже говорит о том, что при желании, от данного метода действительно можно получить максимум пользы.

Вакуумно плазменное напыление

Один из наиболее часто встречающихся методов вакуумного напыления – это вакуумное плазменное напыление. Технология данного процесса максимально проста и заключается она в работе внутренней плазмы. Данный элемент служит в роли некого распределителя, позволяющего сделать процесс напыления максимально качественным.

Кроме этого, подобный метод можно похвастаться еще и точностью нанесения покрытия на изделие. А все потому, что внутри установки подобного типа, заранее создан, установлен код, по которому, подобные системы обычно и работают.

Ионно вакуумное напыление

Данный тип вакуумного напыления, максимально напоминает предыдущий. Наиболее явным отличием данной технологии. Можно назвать предварительный процесс ионизации, позволяющий значительно ускорить рабочий процесс.

Наличие рабочих ионов внутри установки вакуумного напыления, не только улучшает качество рабочего процесса, а и делает его более надежным и что немаловажно, быстрым.

Вакуумное напыление алюминия

Если же говорить о том, какой материал чаще всего поддается процессу вакуумного напыления, то наверняка это алюминий. Причиной этому, послужила сфера применения данного металла, который активно используется практически во всех отраслях.

Но во многих из них, требуется, чтобы данный метод был более прочным и надежным. Именно для этого и созданы установки вакуумного напыления алюминия. Данный процесс, является максимально легким, так как материал очень даже хорошо воздействует со смесью, которая на него наносится, во время вакуумного напыления.

Вакуумное напыление металлов

Если же говорить о процессе вакуумного напыления металла, то это еще более легкий процесс. Технология напыления металла максимально проста, из-за чего ей привыкли пользоваться все предприятия. Для качественного нанесения слоя напыления на металл, требуется лишь довести его до нужной температуры. Это и есть единственное условие, которого стоит придерживаться во время вакуумного напыления.

Многие считают, что именно это и является главным преимуществом процесса вакуумного напыления металла.

Вакуумное ионно плазменное напыление

Наиболее сложным в плане конструкции и одновременно эффективным, является процесс вакуумного ионно плазменного напыления. Данная технология, включает в себя огромное количество спорных и очень важных моментов, без которых, достичь высокого уровня эффективности уж явно не получится.

С помощью данного метода, можно без проблем производить вакуумное напыление титана, либо же вакуумное напыление стекла. А это уже говорит о том, что многофункциональность данного метода находится на максимально высоком уровне.

Установка вакуумного напыления УВН

Но какой бы вид вакуумного напыления вы не выбрали, не используя при этом установок вакуумного напыления УВН, достичь в этом, каких-либо успехов у вас вряд ли получится. На данном этапе, стоимость подобных установок находится на больно высоком уровне.

Но если говорить об их эффективности, то в этом и вовсе нет никаких сомнений. Купив себе подобный агрегат, вы сможете быть полностью уверены, что со временем, он сможет отбить все вложенные в него деньги.

Режущие инструменты, покрытые напылением

Вакуумное напыление - обработка поверхности, нанесение слоев материала на подложку.

Наносимые материалы:

    металлы (например, кадмий, хром, медь, никель, титан)

    неметаллы (например, керамические матричные композиты из углерода / углерода, карбид углерода / кремния и т. д.)

Технологии осаждения паров включают процессы, которые переводят материалы в парообразное состояние путем конденсации, химической реакции. Когда паровая фаза создается из жидкого или твердого источника, это называется физическим осаждением из паровой фазы (PVD). При получении химической реакции происходит известен как химическое осаждение из паровой фазы (CVD).Вакуумное напыление происходит с плазмой или без нее. Вакуумная среда имеет следующие преимущества:

    Уменьшение плотности частиц

    Уменьшение плотности частиц нежелательных атомов и молекул

    Обеспечение появления плазмы

    Возможность регулирования состава газов и паров

  • Возможность управления массовым потоком в камере

Осаждение паров добавляет материал только на поверхность, оставляя большую часть объекта относительно неизменной. В результате свойства поверхности обычно изменяются без значительных изменений микроструктуры подложки.

Физическое осаждение из паровой фазы (PVD напыление)

Физическое осаждение из паровой фазы представляет собой тонкопленочный метод, при котором покрытие наносится поверх всего объекта, а не в определенные области. Всё вакуумное напыление PVD объединяют:

    Нанесение металлов

    Активный газ, такой как азот, кислород или метан

  • Плазменная бомбардировка подложки для обеспечения плотного твердого покрытия

Основными методами вакуумного напыления PVD являются ионное нанесение, ионная имплантация, распыление и лазерное поверхностное легирование. Общий принцип один: газифицированный материал конденсируется на материале подложки для создания желаемого слоя. Таким образом, здесь не происходит химических реакций.

Ионное покрытие в вакууме

Плазменное ионное покрытие используется для осаждения металлов, таких как титан, алюминий, медь, золото и палладий на поверхности составной части. Толщина обычно составляют от 0,008 до 0,025 мм. Преимущества: адгезия, чистота поверхности, очистка поверхности подложки перед нанесением пленки и корректировка свойств пленки (например, морфология, плотность и остаточное напряжение пленки).

Недостатки: необходимость жестко контролировать параметры обработки, потенциальное загрязнение, активируемое в плазме, и возможное загрязнение частиц бомбардируемого газа.

Типичные области применения: рентгеновские трубки, трубопроводные резьбы, используемые в химических средах, лопасти турбины авиационных двигателей, стальные буровые долота, зубчатые колеса, высокоточные литьевые формы, алюминиевые вакуумно-уплотнительные фланцы, декоративные покрытия и антикоррозионная защита в ядерных реакторах.

Ионная имплантация

Ионная имплантация не создает дискретного покрытия, скорее, изменяет элементный химический состав существующей поверхности подложки путем легирования. Азот, например, используется для повышения износостойкости металлов. Чистота поверхности имеет важное значение для данной технологии. Предварительная обработка (например, обезжиривание, полоскание и ультразвуковая очистка) для удаления любых поверхностных загрязнений перед имплантацией очень важно. Время осаждения зависит от температурного сопротивления заготовки и требуемой дозы имплантации.

Ионная имплантация может использовать любой элемент, который может испаряться и ионизироваться в вакуумной камере. Преимущества этого процесса включают воспроизводимость, ликвидацию последующей обработки и минимальное образование отходов. Ионная имплантация не обеспечивает стабильной отделки, если покрытие подвергается воздействию высоких температур.

Ионная имплантация используется в качестве противоизносной обработки для компонентов с высокой стоимостью, таких как биомедицинские устройства (например, протезы), инструменты (например, пресс-формы, штампы, пуансоны, режущие инструменты и вставки). Другие промышленные применения включают нанесение золота, керамики и других материалов на подложки из арсенида пластика, керамики, кремния и галлия для полупроводниковой промышленности.

Распыление и вакуумное напыление

Распыление - нанесения, который изменяет физические свойства поверхности. Здесь газовый плазменный разряд устанавливается между двумя электродами: материалом катода и анодной подложкой. Пленки получаются очень тонкие, от 0,00005 до 0,01 мм. Данным способом часто наносятся хром, титан, алюминий, медь, молибден, вольфрам, золото и серебро.

Пленки с нанесенным слоем обычно используются в декоративных приложениях, таких как браслеты, очки и украшения. Электронная промышленность использует вакуумное напыление (например, проводка тонкой пленки на чипах и записывающих головах, а также магнитные и магнитооптические носители записи). Компании также используют осаждение вакуумным напылением для производства отражающих пленок для архитектурного стекла. В пищевой упаковочной промышленности используется распыление для производства тонких пластиковых пленок для упаковки. По сравнению с другими процессами осаждения напыление является относительно недорогим.

Поверхностное легирование

Поверхностное легирование с использованием лазеров: впрыскивание другого материала в расплав. Поверхностная обработка данным способом даёт высокотемпературные характеристики, износостойкость, улучшенную коррозионную стойкость, лучшие механические свойства и улучшенный внешний вид. Одним из многих методов лазерного легирования поверхности является лазерное плакирование. Общая цель лазерного плакирования - выборочно обработать определенную область. В лазерном плакировании тонкий слой металла (или порошкового металла) соединяется с основным металлом посредством обработки температурой и давлением. Перемещение подложки под пучком и перекрывающиеся дорожки осаждения могут охватывать большие площади. Предварительная обработка не является критичной, хотя поверхность может потребовать шероховатости перед осаждением. После выполняют шлифование или полировку.

Лазерное плакирование может использовать большинство тех же материалов, что и технологии термического напыления. Материалы, которые легко окисляются, трудно осаждать без использования инертного газа. Скорости осаждения зависят от мощности лазера и скорости перемещения. Толщина может варьироваться от нескольких сотен микрон до нескольких миллиметров. Однако, если плотность слишком высокая, возможно образование трещин и расслоение, как в случае алюминия и некоторых сталей. Эта технология также не способна покрывать области, которые находятся вне зоны видимости.

Химическое осаждение из паровой фазы (СVD напыление)

В процессах CVD химическая смесь реагентного газа контактирует с подложкой и затем осаждается в нее. Газы подаются в камеру при нормальных давлениях и температурах, в то время как твердые вещества и жидкости требуют высоких температур и / или низкого давления.


Процесс разложения может быть ускорен или ускорен с использованием тепла, плазмы или других процессов. Химическое осаждение из паровой фазы включает в себя распыление, ионное покрытие, CVD с повышением температуры, CVD с низким давлением, CVD с улучшенным лазерным излучением, активное реактивное испарение, ионный пучок, лазерное испарение и другие варианты. Эти процессы обычно отличаются способами, с помощью которых инициируются химические реакции и обычно классифицируются по рабочему давлению.

Основными шагами в процессах вакуумного напыления CVD являются:

    Формирование реакционной газовой смеси

    Массовый перенос газа-реагента через пограничный слой на подложку

    Адсорбция реагентов на субстрате

  • Реакция адсорбентов с образованием осадка

Предварительная обработка включает механическую и / или химическую очистку (например, ультразвуковую очистку и / или обезжиривание паром), а затем в некоторых случаях путем хонингования паром (для улучшения адгезии). Кроме того, камера осаждения должна быть чистой, герметичной и не содержать пыли и влаги.

Вакуумное напыление CVD используется для защиты от коррозии и износостойкости и применяется к материалам для получения конкретных свойств, которые трудно получить при других процессах. Наиболее часто используемыми металлами в CVD являются никель, вольфрам, хром и карбид титана.

Большинство приложений находятся в электронике оптической, оптоэлектрической, фотоэлектрической и химической промышленности. CVD используется для нанесения покрытий и формирования фольги, порошков, композиционных материалов, отдельно стоящих тел, сферических частиц, нитей и усов.


Вакуумное напыление нитрида титана и титанового карбонитрида

Основы процесса

Нитрид титана (TiN) может наноситься с использованием либо PVD, либо CVD-методов. Для высокоскоростных стальных применений обычно предпочтительны процессы PVD. Однако процессы PVD имеют определенные ограничения в отношении геометрии компонентов, необходимость вращения детали для достижения однородности и температуры

Температура обработки CVD обычно составляет от 850 до 1100°C. Основная химическая реакция (Уравнение 1) в CVD- для получения слоя TiN находится между тетрахлоридом титана (TiCl4), азотом (N) и водородом (H):

2TiC1 4 + N 2 + 4H 2 → 2TiN + 8HC1

В отличие от этого, процессы вакуумного напыления PVD работают при гораздо более низких температурах, в диапазоне от 400 до 600 C (750 - 1100ºF) или ниже. Процессы PVD полагаются на ионную бомбардировку вместо высоких температур (как в случае CVD) в качестве движущей силы. Покрываемую подложку помещают в вакуумную камеру и нагревают до температуры. Материал Ti, испаряется и химически активный газ, такой как N 2 вводится и ионизированный; Испаренные атомы титана затем взаимодействуют с ионизированным азотом с образованием соединения TiN, которое откладывается на подложке. Существует три основных процесса PVD для инструментов: испарение, вакуумное напыление и реактивное ионное покрытие, отличающееся главным образом тем, как испаряется реагирующий металл.

Покрытия из карбонитрида титана (TiCN) имеют немного более высокую твердость по сравнению с TiN и могут демонстрировать несколько меньший коэффициент трения во многих областях применения. Они в основном используются для достижения повышенной абразивной износостойкости.

Вакуумное напыление PVD широко используется для высокоскоростных и инструментальных сталей, поскольку температуры процесса CVD попадают в диапазон, в котором закаливаются некоторые инструментальные стали. Может потребоваться обработка после нанесения покрытия (повторное упрочнение и повторное закаливание). Эти обработки могут влиять на адгезию и размеры покрытия.

Напыление вакуумное является переносом вещества (его частиц), которое напыляют, на твердую поверхность. Оно осуществляется способом конвективного перемещения с давлением около 1 Па. При напылении каждая частица ведет себя совершенно по-разному. Некоторые способны отразиться от напыляемой поверхности, другие - приспособиться, но через какое-то время вовсе покинуть поверхность. И только небольшая часть сможет прижиться в теле опыляемого вещества, поэтому установка вакуумного напыления представляет собой достаточно сложное оборудование. Если использовать большую энергию вместе с высокой температурой, но при этом иметь маленькое химсродство материала, то большинство частиц будет отражено поверхностью.

Особенности установки вакуумного напыления

Температура, выше которой отражается весь объем частиц напыления, а также частицы, не способные взаимодействовать с веществом, именуется критической температурной точкой напыления вакуумом. Нужно внимательно следить во время осуществления напыления, чтобы отметка температуры не достигла максимально недопустимой величины.

Данная величина полностью зависима от происхождения материала, характеристики рабочей поверхности, ее состояния. Поэтому, чтобы было возможно использовать наибольшую величину температуры, когда происходит установка вакуумного напыления, необходимо хорошее состояние рабочей плоскости, тогда пленка вещества будет сделана достаточно профессионально и прочно.

Использование пленок в установке вакуумного напыления

Также существует понятие критической плотности давления. Критическая плотность давления - это минимальная величина плотности, при которой пленка адсорбируется и становится не способной принимать частицы напыления. Главная задача напыления - не достигнуть величины такой плотности, при какой вещество на которое наносят опыляемые частицы, не принимает их из-за своих плохих технических свойств.

Пленки по своей структуре разделяют по качеству напыления, техническим характеристикам и происхождению материала. Пленки бывают:

Аморфными;
- монокристаллическими;
- поликристаллическими.

Аморфные - это те пленки, которые имеют стеклообразное напыление. Монокристаллические пленки имеют более твердую поверхность и по своим функциям практически являются полупроводниками. К поликристаллическим пленкам относят сплавы, металлы и Si. Когда происходит установка вакуумного напыления, то преимущественно используются монокристаллические пленки, так как они имеют наилучшие технические характеристики и способны переносить достаточно большие нагрузки при эксплуатации.

Принцип работы установок вакуумного напыления

Для сохранения технических свойств, характеристик напыления вакуумом, после процедуры напыления используют отжиг (не нарушая вакуум) при воздействии высокой температуры, потому как такая процедура достаточно хорошо помогает сохранить полезные свойства напыляемых материалов. Температура данного отжига в несколько раз превышает температуру, при какой происходило напыление вакуумом.

Когда происходит установка вакуумного напыления, специалисты пытаются создать поверхностную структуру из одного или нескольких материалов, которые способны сделать ее гораздо лучше и эффективнее. При вакуумном напылении, в зависимости от способа нанесении пленки, используют способы периодического, полунепрерывного и непрерывного воздействия. Наиболее удобным и эффективным является непрерывный способ воздействия.

Установки вакуумного напыления включают в себя много функций. Сначала создается вакуум, затем - распыляется и испаряется пленочный материал, осуществляется транспортировка деталей, подача электропитания и осуществление контроля режима вакуумного напыления, равно как и режима свойств пленок.

Устройство установки вакуумного напыления

Как правило, все оборудование этого типа имеет схожую конструкцию, состоящую из ряда элементов. Основным рабочим органом можно назвать горизонтальную камеру, в которой и происходит напыление, благодаря размещенному в ней технологическому устройству. Обеспечить требуемый вакуум призваны газораспределительная и откачная системы. К важным рабочим узлам оборудования относятся, в том числе, источники, обеспечивающие испарение или распыление обрабатываемых материалов.

Любая установка вакуумного напыления имеет систему электропитания и блокировки рабочих элементов, отвечающих за включение/отключение оборудования. Шкаф питания располагают в стороне от оборудования. Необходимую скорость нанесения напыления на пленки, их толщину, температуру деталей и рабочую температуру, и прочие показатели регулирует предустановленная система контроля и управления. Все датчики, относящиеся к этой системе, связаны между собой единым микропроцессором.

Установки снабжаются и специальными элементами транспортировки, с помощью которых осуществляется доставка деталей в камеру или вывод из неё. Различные вспомогательные устройства установок вакуумного напыления, включающие в себя экраны, манипуляторы, заслонки, установленные внутри рабочей камеры, устройства очистки газов и прочие элементы также являются неотъемлемой частью оборудования. Обрабатываемые материалы расположены на подложках, которые вращаются вокруг барабана на специальных держателях. За один оборот барабана каждая подложка проходит зону испарения разными сторонами.

Основным функциональным предназначением вакуумной установки, является создание и поддержание технического вакуума, который достигается путем откачивания смеси из системы. Широкое применение вакуумным установкам находится в металлургической, текстильной, химической, автомобильной, пищевой и фармацевтической сферах. К основным деталям установки относится насос, панель с фильтрами, блок управления камера.

Навигация:

Применение вакуумных установок

Вакуумные установки могут применяться для проведения лабораторных исследований. Входит в состав микроскопов, хроматографов, испарителей и систем фильтрации. Для этих целей может подойти агрегат, который не будет занимать большую площадь. Производительность таких агрегатов не стоит на первом месте. Чаще всего это форвакуумный или турбомолекулярный насос. При работе с агрессивными газами лучший вариант – мембранный насос.

Вакуумные установки играют немаловажную роль в испытательном оборудовании. Они обеспечивают необходимую скороподъемность летательным аппаратам. Для того чтобы процесс взлета или посадки протекал успешно, необходимо обеспечить быструю скорость откачки.

Сухие насосы используются для полупроводниковых и напылительных вакуумных установок, для осаждения материалов. Отлично подойдут для создания сверхвысокого вакуума. К ним относятся турбомолекулярные и криогенные насосы.

В металлургической промышленности активно используются насосы, которые обладают достаточной пропускной способностью. Они должны быть износостойкими, так как в системе имеется пыль и грязь. Отлично справятся с задачами в промышленной сфере когтевые и винтовые насосы, выполняющие форвакуумную откачку. Возможно применение диффузионных насосов.

Вакуумная установка 976А относится к лабораторному типу. Она предназначена для определения водонасыщенности асфальтобетона в лабораторных условиях. Рабочий объем камеры составляет 2 л. Вакуумная установка способна создать конечный вакуум значением 1х10-2.

Элементы вакуумных установок

Вакуумные установки создают и поддерживают рабочий вакуум в определенном герметичном объеме. Как правило, для этого используются элементы, имеющие одинаковое предназначение в различных видах установок. В их состав входит блок управления со стойкой управления, вакуумный блок, подколпачное устройство, системы охлаждения и вакуумная система и привод подъема колпака. Вакуумная система состоит из насоса любого типа, вакуумного агрегата, трубопроводов, вакуумметра и электромагнитного натекателя.

Вакуумные установки Busch

Вакуумные установки Busch – это, в первую очередь, качественные вакуумные насосы. Компания выпускает такие установки, как пластинчато-роторная модель вакуумного насоса R5. Она отличается высоким качеством и производительностью. Предельное давления агрегата составляет от 0,1 до 20 гПа. Скорость откачки среды достигает 1800 м3/ч. Во вторую очередь – это кулачковые насосы и компрессоры. Одним из таковых является модель Mink. Широко применяется в промышленности. Особенно там, где необходимо поддержание постоянного уровня вакуума. Предельное давление составляет от 20 до 250 гПа. Скорость откачки может достигать 1150 м3/ч.

Вакуумные установки Булат

Одним из примеров установок для нанесения тонкопленочных покрытий, является модель Булат. Она производит нанесение пленки вакуумно-плазменным способом. Может производить покрытие посредствам других электропроводящих материалов. Это молибден, цирконий, нитрид и карбонитрид. Изначально модель разрабатывалась для нанесения покрытия на зубные протезы из металла. Установка включает в себя откачивающий пост, форвакуумный инструмент и соответствующее электрооборудование.

Другие производители вакуумных установок

Компания Agilent Technologies является одной из самых больших по производству вакуумного оборудования. На предприятии налажен выпуск вакуумных насосов, течеискателей, вакуумметров, вакуумных масел и других составляющих систем.

Компания Air Dimensions Inc. специализируется на массовом выпуске высококачественных насосов диафрагменного типа, которые осуществляют отбор проб коррозийных газов, а так же сухих диафрагменных компрессоров.

Компания Edwards производит лабораторную и промышленную вакуумную технику. Среди них вакуумные насосы, вакуумметры и другое вспомогательное оборудования. Славится выпуском широкого ассортимента насосов разного типа.

Установки вакуумного напыления

При помощи установки вакуумного напыления (УВН) производится покрытие различных деталей покрытиями, которые выполняют проводящие, изолирующие, износостойки, барьерные и другие функции. Данный метод является самым распространенным среди других процессов микроэлетроники, в котором применяема металлизация. Благодаря таким установкам возможно получение просветляющих, фильтрующих и отражающих покрытий.

В качестве материалов покрытия может использоваться алюминий, вольфрам, титан, железо, никель, хром и т.д. При необходимости в среду может добавляться ацетилен, азот и кислород. Активация химической реакции при нагреве, ионизации и диссоциации газа. После проведения процедуры покрытия, дополнительная обработка не требуется.

Установка УВН-71 П-3 способна производить отработку технологического напыления. Она задействована в серийном производстве различных пленочных схем. При ее помощи производится изготовление тонких пленок в условиях высокого вакуума. Применяемый метод – резистивное испарение металлов.

Вакуумная установка УВ-24 производит лабораторные испытания асфальтобетона. Помогает определить его качество. Отличительная особенность данного агрегата – наличие двух откачиваемых баков, которые соединены между собой.

Магнетронное напыление

При магнетронном напылении нанесение тонкой пленки происходит посредствам катодного распыления. Устройство, использующие данный метод, называются магнетронные распылители. Данная установка может производить напыление многих металлов и сплавов. При ее использовании в различных рабочих средах с кислородом, азотом, диоксидом углерода и т.п. получаются пленки с различным составом.

Ионное напыление

Принцип работы ионной установки в вакууме – бомбардировка твердых тел ионами. При помещении подложки в вакуум, происходит попадание атомов на нее и образуется пленка.

Другие способы напыления

Вакуумное напыление может производиться с помощью оборудования периодического и непрерывного действия. Установки с периодическим действием применяются при определенном количестве обрабатываемых изделий. В массовом или серийном производстве используются установки непрерывного действия. Существуют одно-,и многокамерные виды напылительного оборудования. В многокамерных установках напылительные модули расположены последовательно. Во всех камерах производится напыление определенного материала. Между модулями находятся шлюзовые камеры и транспортирующее конвейерное устройство. Они осуществляют операции по созданию вакуума, испарения материала пленки, транспортировку по отдельности.

Вакуумные агрегаты

Вакуумный водокольцевой насосный агрегат типа ВВН 12 производит отсасывание воздуха, неагрессивных газов и других смесей, которые не очищаются от влаги и пыли. Поступающий в установку газ не требует очистки.

Агрегат вакуумный золотниковый АВЗ 180 универсален, имеет хороший показатель предельного остаточного давления, небольшой вес и отличается быстродействием и компактностью.

Технические характеристики агрегата вакуумного золотникового АВЗ 180.

Вакуумный агрегат АВР 50 способен откачивать из вакуумных пространств воздух, неагрессивные газы, пары и парогазовые смеси. Он не предназначен для перекачивания вышеперечисленных составов из одной емкости в другую. В его состав входят два насоса: НВД-200 и 2НВР-5ДМ.

Для приобретения товарного вида и определенных технических свойств на современном производстве все готовые изделия покрываются различными материалами. Особенно актуальным этот вопрос является для металлических деталей, где покрытие играет не столько декоративную роль, сколько защищает металл от коррозии и прочих вредных факторов окружающей среды.

Вакуумное напыление

В современном производстве самой продвинутой технологией нанесения покрытий на детали является вакуумное напыление. Технология заключается в прямой конденсации пара наносимого покрытия на поверхность детали. Определяется три основных стадии такого напыления:

    Испарение вещества, из которого будет создаваться покрытие;

    Перенос созданного пара к поверхности, на которую вещество будет наноситься;

    Конденсация пара на поверхность детали и создание покрытия из него.

Установка для хромирования литых дисков

Методы вакуумного напыления

Помимо вакуума, в напылении могут учувствовать и другие физические процессы. Нижеприведенная классификация также будет касаться и веществ, которые будут напыляться на поверхность.

Вакуумно-плазменное напыление

Вакуумно-дуговое нанесение покрытий проводится по следующему механизму. Катодом выступает поверхность, на которую необходимо нанесение пленки, анодом выступает подложка газоразряда. Когда дуга накаляет атмосферу до предельной температуры, происходит переход напылительного материала в газообразную фазу и перенос его к катоду. Затем молекулы напылителя конденсируются на поверхности изделия, образуя однородный слой. Однородность в установках вакуумно-дугового напыления может быть отрегулирована вплоть до получения исходного изделия с разводами напылителя.

Такая сложная технология применяется для нанесения сверхтвердых покрытий на режущие и сверлящие инструменты. Крепкие износостойкие буры для перфораторов создаются с помощью вакуумно-плазменного напыления.

Высокопрочные буры для перфоратора

Ионно-вакуумное напыление

Считается самым экологически чистым способом нанести покрытие на любую металлическую поверхность. Минус заключается в дорогостоящем оборудовании, далеко не каждое предприятие может себе позволить его покупку и установку.

Жесткие требования также предъявляются к чистоте поверхности, однако конечный результат превосходит все ожидания. Нанесенное покрытие отличается высокой однородностью, прочностью и износоустойчивостью, поэтому таким способом напыляют покрытия на детали и механизмы, которые будут эксплуатироваться в жестких климатических условиях. Является последней операцией, после которой дальнейшая обработка деталей не допускается – ни сварки, ни резки быть не должно.

Вакуумное напыление алюминия

Нанесение алюминия считается самым популярным способом металлизации практически любой поверхности. Универсальность алюминия позволяет наносить его на такие необычные поверхности, как пластик и стекло, причем, в отличие от остальных металлов, здесь не нужно дополнительное лаковое покрытие для прочности. Алюминий обычно используется в декоративных целях – им обрабатываются автомобильные аксессуары и отражатели для фар, косметические элементы, ручки шкафов и дверей, швейные принадлежности. Этот металл хоть и не отличается высокой прочностью, однако отработка технологии позволила сильно уменьшить стоимость такого напыления, делав его самым распространенным в мире.

Отражатель автомобильной фары с алюминиевым покрытием

Вакуумное напыление металлов

Помимо алюминия, имеется ряд не менее распространенных металлов для напыления. Благодаря различным физическим и химическим свойствам они нашли применение абсолютно во всех отраслях промышленности. Основные назначения напыленных металлов:

    улучшение проводимости;

    повышение изоляции;

    придание износоустойчивых и антикоррозийных свойств.

Регулирование температуры при нанесении слоя покрытия позволяет придать конечному изделию практически любой оттенок, этим часто пользуются для нанесения покрытий «под золото» (используются никеле-титановые сплавы).

Широкое распространение напыление титана и серебра нашли в медицине. Эти уникальные металлы очень хорошо взаимодействуют с организмом человека и имеют антибактериальные свойства. Имплантаты и хирургические инструменты (а также стоматологические и прочие) практически везде имеют напыление серебра – высокая гарантия прочности и стерильности инструмента.

Вакуумное ионно-плазменное напыление

Под воздействием высоких температур покрытие не просто конденсируется на поверхности детали, оно буквально запекается на нем, что придает конечному изделию очень высокие технические характеристики – износоустойчивость при механическом воздействии и хорошую сопротивляемость жестким погодным условиям.

Установка вакуумного напыления УВН

Приборы типа УВН – современные высокотехнологические установки вакуумного напыления. В зависимости от назначения, может оборудоваться любыми устройствами для испарения вещества и его переноса на поверхность детали. Строение:

    Технологическая камера закрытого типа – область, где размещается деталь, которая обрабатывается в процессе вакуумного напыления.

    Блок управления – панель с кнопками и регуляторами, которые позволяют задавать все необходимые параметры перед началом работы. Современные варианты установок вакуумного напыления оборудованы цифровыми дисплеями для отображения параметров процесса в реальном времени.

    Корпус установки скрывает под собой все важные механические и электронные узлы агрегата, защищая их от случайного и несанкционированного вмешательства, а также обеспечивая безопасность оператору станка. В зависимости от размера машины, комплектуется колесиками (с тормозными колодками, для маленьких моделей), либо устанавливается стационарно (для мощных и производительных камер).

Классическая УВН



Понравилась статья? Поделитесь с друзьями!