Зачем нужны микроэлементы? Макро, микроэлементы в питании растений.

Общие сведения

Составлено по материалам российских и зарубежных научных статей, монографий и конференций. Атлас проф. Бергмана: «Нарушения питания культурных растений в цветных изображениях». Под общей ред. проф., доктора агрономических наук Вернера Бергмана.- Йена, 1976 Ссылка на первоисточник: http://www.landart.ru/03-uhod/c-bergman/03c000.htm

Внешние признаки недостатка отдельных элементов питания у растений бывают различными. Поэтому по внешним признакам можно судить о недостатке того или иного элемента питания и о потребности растений в удобрениях. Однако замедление роста и изменение внешнего вида растений не всегда обусловливаются недостатком питательных веществ. Сходные изменения вызываются иногда неблагоприятными условиями роста (недостаточное освещение, низкая температура и т. д.). Важно уметь отличать эти изменения внешнего вида растений от изменений, вызванных недостатком питательных веществ.

На внешний вид растения оказывает влияние также избыточное количество некоторых элементов, не нужных растению или нужных ему в небольшом количестве. При избыточном поступлении их в растения замедляется рост, отмирают ткани, наблюдаются различные внешние изменения, а иногда и гибель растений.

Симптомы нехватки разных элементов питания у одного и того же растения обычно не проявляются одновременно, что значительно упрощает проблему диагноза и последующего улучшения питания растений. При недостатке нескольких элементов первыми проявляются и исчезают в результате внесения соответствующих удобрений симптомы недостатка того элемента, действие которого является доминирующим; затем появляются симптомы недостатка другого элемента, и так далее.
Сравнение симптомов

Общим симптомом недостатка любого из элементов питания является задержка роста растения, хотя в одном случае этот симптом может проявляться более отчетливо, чем в другом. Ниже приводится сравнение других (кроме задержки роста) симптомов недостаточности минерального питания.

Симптомы недостаточности минерального питания растений можно разделить на две большие группы:

I. Первую группу составляют главным образом симптомы, проявляющиеся на старых листьях растения. К ним относятся симптомы недостатка азота, фосфора, калия и магния. Очевидно, при нехватке указанных элементов они перемещаются в растении из более старых частей в молодые растущие части, на которых не развиваются признаки голодания.

II. Вторую группу составляют симптомы, проявляющиеся на точках роста и молодых листочках. Симптомы этой группы характерны для недостатка кальция, бора, серы, железа, меди и марганца. Эти элементы, по-видимому, не способны перемещаться из одной части растения в другую. Следовательно, если в воде и грунте нет достаточного количества перечисленных элементов, то молодые растущие части не получают необходимого питания, в результате чего они заболевают и погибают.

Приступая к определению причины нарушения питания растений, следует прежде всего обратить внимание на то, в какой части растения проявляются аномалии, определяя, таким образом, группу симптомов. Симптомы первой группы, которые обнаруживаются главным образом на старых листьях, могут быть разбиты на две подгруппы:

1) в большей или меньшей степени общими, затрагивающими лист целиком (недостаток азота и фосфора);

2) или же носить лишь местный характер (недостаток магния и калия).

Вторая группа симптомов, проявляющихся на молодых листочках или точках роста растения, может быть разбита на три подгруппы, которые характеризуются:

1) появлением хлороза, или потерей молодыми листьями зеленой окраски без последующей гибели верхушечной почки, что указывает на недостаток железа, серы либо марганца;

2) гибелью верхушечной почки, сопровождающейся потерей ее листьями зеленой окраски, что указывает на недостаток кальция либо бора;

3) постоянным увяданием верхних листьев, что указывает на недостаток меди.

Ниже описаны симптомы, проявляющиеся вследствие недостатка минеральных веществ, для каждого элемента отдельно.

Азот (N)

Старые листья приобретают коричнево-желтый оттенок и медленно отмирают, "растворяясь" в воде. При недостатке азота посветление и пожелтение окраски начинается с жилок и прилегающей к ним части листовой пластинки; части листа, удаленные от жилок, могут сохранять еще светло-зеленую окраску. На листе, пожелтевшем от недостатка азота, как правило, не бывает зеленых жилок.

Фосфор (P)

Окраска старых листьев становится темно-зеленой. При сильном недостатке фосфора на листьях появляются бурые или красновато-бурые пятна, постепенно превращающиеся в дыры.

Калий (К)

Наблюдается пожелтение, а в дальнейшем побурение и отмирание кончиков и краев листьев. Развивается бурая пятнистость особенно ближе к краям. Края листьев закручиваются, наблюдается морщинистость. Жилки кажутся погруженными в ткань листа. Признаки недостатка у большей части растений прежде всего появляются на более старых нижних листьях.

Признаки недостатка калия

Кальций (Са)

Признаки недостатка появляются прежде всего на молодых листьях. Листья бывают хлоротичные, искривленные, края их закручиваются кверху. Края листьев неправильной формы, на них может обнаруживаться опаленность бурого цвета. Наблюдается повреждение и отмирание верхушечных почек.

Магний (Mg)

Между жилками появляются пятна белого или бледно-желтого цвета. При этом крупные жилки и прилегающие к ним участки листа остаются зелеными. Кончики листьев и края загибаются, в результате чего листья куполообразно выгибаются, края листьев морщинятся и постепенно отмирают. Признаки недостатка появляются и распространяются от нижних листьев к верхним.

Бор (В)

Чувствительность растений к недостатку бора весьма различна. При недостатке бора у растений чернеют и отмирают точки роста. Молодые листья мелкие, бледные, сильно деформированные.

Признаки недостатка бора

Медь (Cu)

Бледная окраска и остановка роста молодых листьев. Длинностебельные растения кустятся (дают боковые побеги).

Железо (Fe)

При недостатке железа наблюдается равномерный хлороз между жилками листа. Окраска верхних листьев становится бледно-зеленой или желтой, между жилками появляются белые участки, и весь лист впоследствии может стать белым. Признаки недостатка железа появляются прежде всего на молодых листьях.

Марганец (Mn)

При недостатке марганца наблюдается хлороз между жилками листа - на верхних листьях между жилками появляются желтовато-зеленые или желтовато-коричневые пятна, жилки остаются зелеными, что придает листу пестрый вид. В дальнейшем участки хлорозных тканей отмирают, при этом появляются пятна различной формы и окраски. Признаки недостатка появляются прежде всего на молодых листьях и в первую очередь у основания листьев, а не на кончиках, как при недостатке калия.

Сера (S)

Недостаток серы проявляется в замедлении роста стеблей в толщину, в бледно-зеленой окраске листьев без отмирания тканей. Признаки недостатка серы сходны с признаками недостатка азота, появляются они прежде всего на молодых растениях.

АЗОТ

Из основных питательных веществ для винограда в минимуме чаще всего оказывается азот, однако редко в такой степени, что появляются очевидные признаки болезни. Азот - это важнейший структурный элемент белковых соединений и компонентов плазмы, незаменимых для образования новых клеток. Поэтому на недостаток азота виноград реагирует ослаблением роста, образованием тонкой древесины с короткими междоузлиями и мелких ягод винограда. Листья также не достигают нормального размера и становятся вместо темно-зеленых более или менее светлыми. Одновременно черешки часто окрашиваются в красный цвет вследствие образования антоциана. В отличие от хлороза самые молодые листья при недостатке азота долгое время остаются зелеными, а первыми желтеют старые листья.

Из микроэлементов виноградному кусту недостает главным образом бора. Он незаменим для образования клеток и оплодотворения.

Картина заболевания в результате недостатка бора очень характерна: весной кусты начинают рост даже при сильном недостатке бора с нормальной зеленой окраской листьев. Однако вскоре рост побегов ослабевает, а окраска листьев мозаично осветляется. В то время как части листьев у главных жилок остаются еще зелеными, остальная поверхность обесцвечивается, буреет и целые участки ее отмирают. У более или менее обесцвеченных листьев края часто загибаются вниз, придавая им сводчатую форму. У побегов кустов винограда, страдающих от недостатка бора, узлы часто распределены нерегулярно или сближены, причем иногда выпадают два междоузлия, так что по три узла сидят близко друг к другу. Нередко к концу июня или позже отмирают верхушки побегов. Верхушки пасынков также очень часто отмирают. При сильном недостатке бора обычно не образуется соцветий или лишь немногие, которые ко времени цветения буреют и целиком опадают.

При более легком недостатке бора рост винограда соответственно тормозится меньше. Сильное посветление и обесцвечивание хлорофилла наблюдаются только на немногих листьях. Цветки, однако, большей частью осыпаются, и, кроме отдельных ягод, нормального размера образуются бессемянные ягодки размером чуть больше булавочной головки. В самых легких случаях недостатка бора он проявляется в мраморной темно- и светло-зеленой окраске более или менее многих листьев.

недостаток бора у винограда 2По зарубежным данным, недостаток бора на некоторых почвах проявляется в побурении мякоти ягод, признак, соответствующий образованию внутреннего коркового слоя у яблок.

Обычно недостаток бора проявляется сильнее в засушливые годы, чем в дождливые. Это объясняется тем, что содержание бора в иссушаемом пахотном слое выше, чем в более глубоких слоях. От недостатка бора виноград нередко страдает на почвах с высоким содержанием извести, где бор прочно фиксируется, особенно в засушливые годы, и недоступен для корней. В кислых почвах бор иногда полностью отсутствует вследствие вымывания.

Для устранения недостатка бора в почву вносят буру, лучше всего в форме гранул из расчета 5-7,5 кг/га. При этом следует позаботиться о равномерном распределении буры. Слишком высокое содержание бора в почве вызывает тяжелые повреждения растений. Если обнаружен слабый недостаток бора, то достаточно использовать борсодержащие удобрения, такие, как борсуперфосфат или другие с соответствующим добавлением бора. При подозрении на недостаток бора следует произвести анализ почвы. Наличие 1-3 мг бора на 1 кг почвы свидетельствует о хорошем обеспечении бором, но при содержании бора менее 0,5 мг на 1 кг почвы следует считаться с его недостатком. При содержании бора более 3 мг/кг почвы следует отказаться от внесения бортных удобрений, потому что это может повредить кусты винограда, особенно на кислых почвах.

КАЛИЙ

В противоположность азоту и фосфору калий в виноградных растениях не связан в прочных соединениях. Недостаток калия меньше отражается на росте кустов винограда, чем в снижении физиологической продуктивности. Калий способствует поглощению воды и регулирует водоотдачу. При недостатке калия водный баланс складывается неблагоприятно, и вода расходуется бесполезно. Засухоустойчивость и морозостойкость винограда при недостатке калия снижаются, а восприимчивость к грибным болезням повышается. Кроме того, недостаток калия может привести к усилению солнечных ожогов на гроздях, потому что вызванная этим фоточувствительность тканей возникает также у ягод, и это приводит к некрозам.

При остром недостатке калия появляются явные признаки заболевания. Сначала поверхность самых нижних листьев окрашивается в сине-фиолетовый цвет. В июле-августе листья окрашиваются в буро-фиолетовый цвет, затем буреют и отмирают; отрицательное влияние на рост куста винограда, размер его листьев и развитие гроздей винограда пока еще не очень заметно.

При продолжающемся недостатке калия листья изменяют окраску уже перед цветением, а вскоре после этого неокрашенными остаются только самые молодые листья. Иногда верхние листья выглядят с верхней стороны как лакированные. Отмирание происходит быстрее и начинается раньше. В июле или августе листья вблизи гроздей часто почти все высыхают. Весь куст винограда теперь заметно поврежден. Листья становятся мельче, рост древесины ослабевает, а грозди отстают и по размеру и по времени созревания. Третья фаза сильного недостатка калия выражается в угнетенном росте кустов и, в конце концов, приводит к отмиранию куста. Виноградные побеги укорачиваются, остаются тонкими с короткими междоузлиями. Обычно весной на рукавах развиваются лишь редкие почки и, часто весь рукав не образует больше побегов. Завязывание ягод минимальное, и обычно завязи отмирают после цветения. Листья мелкие и скорее светло -, чем темно-зеленые. Реже появляется темная сине-фиолетовая окраска. Листья отмирают после бурого окрашивания, начинающегося с краев. Наряду с этим часто между жилками отмечается некроз. В зависимости от типа почвы и серьезности заболевания обильное калийное удобрение уже через 1-2 года приводит к полному выздоровлению виноградного куста. Почвы с более высоким содержанием извести в засушливые годы способствуют возникновению недостатка калия.

Необходим определенный опыт для распознавания признаков недостатка - питательных веществ на основании внешних признаков кустов винограда, так как они могут быть различными в зависимости от обстоятельств. То один, то другой признак становится более заметным.

Если в почве содержится слишком мало извести, то ее меньше недостает в качестве питательного вещества для винограда, а больше как структурного компонента почвы. То, что требуется винограду в качестве питательного вещества, обычно имеется в любой почве. Недостаток извести в почве ведет к более сильному подкислению почвы с его вредными последствиями для структуры и жизнедеятельности почвенных организмов.






МАГНИЙ

По новым данным, недостаток магния довольно широко распространен. В легких, кислых почвах часто имеются лишь следы магния. Недостаток магния для винограда выражается главным образом в обесцвечивании краев листьев и тканей между жилками. Разложение хлорофилла обычно начинается в конце июня, иногда раньше или позже, с нижних листьев и постепенно захватывает листья, расположенные выше. У красных сортов винограда участки листьев между жилками окрашиваются в красный цвет, причем, как и у белых сортов, зеленой остается более или менее узкая кайма вдоль жилок. При сильном недостатке магния, частом на кислых почвах, наблюдаются иногда также некрозы на отдельных листьях, обычно располагающиеся кольцом вблизи краев листа. Для устранения недостатка магния необходимо усиленное внесение минеральных удобрений, содержащих магний. Вместо чисто калийных солей следует вносить калимагнезию в количестве 6- 8 г/м2. На кислых почвах для известкования лучше всего использовать жженый доломитизированный известняк. Томасфосфат, камафос и многие полные минеральные удобрения также содержат магний в доступной для растений форме.

ФОСФОР

Также при недостатке фосфора рост виноградного куста ослабевает, образуются тонкая слабая древесина и мелкие листья (на рис. два побега слева - норма, два справа - недостаток фосфора). Однако в отличие от недостатка азота листья остаются темно-зелеными. Фосфор входит в состав веществ плазмы, и особенно много его содержится в клеточном ядре. При недостатке фосфора уменьшается, прежде всего, урожайность и размер гроздей. При сильном недостатке фосфора и жилки и черешки листьев окрашиваются в красный цвет вследствие сильного образования антоциана. От недостатка фосфора виноград страдает главным образом на очень кислых почвах. Картина болезни - точечное побурение на краях листьев и их засыхание - это, по нашим данным, результат слишком кислой реакции почвы. С недостатком фосфора она связана в том отношении, что фосфор в очень кислых почвах в значительной мере фиксирован и недоступен для корней винограда. Поэтому в подобных случаях, помимо усиленного удобрения фосфатами, прежде всего, необходимо в изобилии вносить известь, лучше всего в виде доломитизированной извести.

ЦИНК

Цинк влияет на азотный и ферментативный обмен виноградного куста. При недостатке цинка рост побегов ослабевает или задерживается. Ломкие листья с пятнами между жилками остаются мелкими, асимметричными, острозубчатыми с металлическим блеском. Грозди рыхлые с мелкими ягодами. Причиной недостатка большей частью бывает чрезмерное удобрение фосфатами. Опрыскивание виноградных листьев сульфатом цинка может ослабить недостаток.

Корневое почвенное питание

Роль корня с точки зрения физиологии питания состоит в поглощении воды и минеральных элементов из почвы, частичной или полной переработке поступивших ионов в различные органические соединения, синтезе физиологически активных веществ, без которых не происходит нормального роста и развития надземных органов и транспортировки их в надземные органы растений.

Каждому виду растений необходимо определенное соотношение питательных элементов, которое изменяется в течение вегетации. Питательные вещества наиболее энергично поступают в растения в период активного роста. На более ранних фазах развития для создания ассимилирующей поверхности (листья) растения нуждаются в усиленном азотном питании. Для создания репродуктивных органов необходимо усиленное фосфорно-калийное питание на фоне умеренного азотного питания.

Часть элементов питания может поступать в растения и через листья. Это не заменяет корневого питания, но весьма положительно влияет на величину и качество урожая.

Важнейшими элементами, необходимыми для жизни растений, являются азот, фосфор, калий, кальций, магний, железо и сера. Растениям необходимы марганец, бор, молибден и некоторые другие элементы, но в значительно меньшем количестве. Из-за этого азот, фосфор, калий называют макроэлементами, а все остальные микроэлементами. Микроэлементы содержатся в почве, поступают в растения вместе с макроудобрениями, или их вносят дополнительно, чаще всего с помощью внекорневых подкормок.

Определение признаков недостатка или избытка элементов минерального питания зависит от возможности повторного их использования (реутилизации) в растительном организме. Поскольку кальций, сера, железо, марганец, бор, медь и цинк не реутилизируются, визуальные признаки их недостатка сначала обнаруживаются на более молодых органах растений, в том числе и на листьях. Азот, фосфор, калий и магний в растениях могут быть многократно использованы, поэтому внешние признаки их недостатка в первую очередь проявляются на более старых листьях и других органах растений.

Минеральные вещества и их применение для комнатных растений

Минеральные вещества необходимы для роста и развития комнатных растений. Их недостаток может вызвать ослабленность растения, снижение сопротивляемости болезням и вредителям, может негативно отразиться на их плодоношении. Но, также следует помнить, что избыток минеральных веществ также может нанести вред вашему растению. Всегда соблюдайте инструкцию по применению минеральных веществ и не пропустите признаки недостатка минеральных веществ у своих растений.

Признаки недостатка минеральных веществ:
- замедленный рост; низкая сопротивляемость болезням и вредителям;
- бледные листья. Могут появиться желтые пятна;
- цветки не образуются, либо они маленькие и бледноокрашенные;
- слабые стебли, преждевременное опадание нижних листьев.

Признаки избытка минеральных веществ:
- поникающие листья;
- лето: приостановка роста;
- зима: слабые вытянутые стебли;
- белая корочка на поверхности почвы и наружной стороне керамического горшка в районах с мягкой водой;
- сухие коричневые пятна; сухие края листьев.

Азот (N).Особенно необходим листьям.
Фосфаты (РА).Особенно необходимы корням.
Калий (К).Особенно необходим цветкам.
Микроэлементы (Мп, Мд, Fe, Mo, S, В, Zn, Си).Присутствуют в некоторых удобрениях для домашних растений, получаемых вытяжкой из перегноя, или такие удобрения составляют из химикатов.

Советы по применению удобрений с минералами
Если вы обработали растение средством против вредителей, через 3 дня внесите удобрение очень слабой концентрации. Затем регулярно подкармливайте растение в соответствии с его потребностями. Оно быстрее выздоровеет.

В зависимости от вида используемых вами удобрений необходимо принимать следующие меры предосторожности. Жидкие удобрения всегда вносят во влажный субстрат, чтобы корни не начали интенсивно впитывать минеральные соли.

Лучше всего, вне зависимости от разновидности удобрения, развести 1 колпачок удобрения в большой лейке (минимум 5 л) и использовать этот питательный раствор при каждом поливе, если интервал между поливами равен 3 дням или превышает этот срок, и при каждом втором поливе в очень жаркую погоду.

Если следовать этой инструкции, растения будут подпитываться мягко, не рискуя получить ожоги. Они будут равномерно развиваться, что даст, в конечном счете, лучший результат.

Если вы используете емкость с резервуаром для воды, то удобрение вносится непосредственно в резервуар, но в половинной концентрации, чтобы избежать передозировки. Гранулированные удобрения следует равномерно распределить по поверхности субстрата, помня о том, что указанная на упаковке доза является максимальной.

ПИТАНИЕ РАСТЕНИЙ, УДОБРЕНИЯ

Для нормального развития комнатные растения нуждаются в сбалансированном минеральном питании, которое осуществляется путем всасывания корневой системой почвенных растворов. В субстрате, в котором выращиваются растения, должны содержаться все основные элементы минерального питания: макроэлементы (азот, фосфор, калий, сера, магний, кальций) и микроэлементы (цинк, марганец, бор, молибден, кобальт и др.). Особую роль в минеральном питании тропических и некоторых субтропических растений играет железо, концентрация ионов которого в почвенном растворе должна быть относительно ближе (на два порядка меньше) к макроэлементам.

Элементы минерального питания требуются растениям не только в достаточном количестве, но и в определенном соотношении. Недостаток любого элемента питания не может быть компенсирован избытком другого; напротив, значительный избыток любого элемента может вызвать угнетение растения.

Азот входит в состав белков, хлорофилла и многих других органических соединений. Наибольшую потребность в нем растения испытывают в период активного роста. При азотном голодании листья приобретают бледно-зеленую окраску, мельчают, уменьшается ветвление побегов. При избытке азота усиливается рост, ткани образуются рыхлые, цветение задерживается.

Фосфор- основной элемент, обеспечивающий энергетические процессы в живой клетке. Фосфор необходим во все периоды жизни растений, особенно при подготовке к цветению. Недостаток фосфора вызывает замедление ростовых процессов, задержку цветения.

Калий оказывает влияние на образование и превращения углеводов, белков и аминокислот, которые обусловливают устойчивость растений к неблагоприятным факторам внешней среды. Недостаток калия нарушает азотный обмен, в клетках накапливается аммиак, который в свою очередь вызывает отмирание тканей. Признаки калиевого голодания проявляются прежде всего на старых листьях. Пожелтение и отмирание тканей начинается с верхушки листа, распространяется вниз по краям пластинки, а затем - между жилками. Приостанавливается и прекращается формирование бутонов.

Магний входит в состав хлорофилла и играет важнейшую роль в процессе фотосинтеза. При недостатке магния растение задерживается в развитии, листья белеют с верхушки и между жилками часто скручиваются, плоды не вызревают. Большинство культивируемых тропических растений относятся к группе кальциефобов, и их потребность в кальции ничтожна. Высокий уровень карбонатов кальция в поливной воде и растворах удобрений делает все микроэлементы недоступными для растений.

Недостаток микроэлементов вызывает острые физиологические расстройства, которые на молодых листьях проявляются в различного рода хлорозах - пожелтении, пятнистости, омертвении отдельных участков. Замедляется рост, часто наблюдается отмирание точек роста.

Одним из важнейших факторов, влияющих на процесс поглощения веществ из почвы и распространения их в клетках, является кислотность почвенного раствора, сказывающаяся на растворимости и доступности макро- и микроэлементов минерального питания. Для большинства комнатных растений оптимум находится в слабокислой или кислой среде (см. «Полив»). В щелочной среде понижается растворимость микроэлементов растения страдают от недоступности железа, бора, марганца, цинка, меди, хотя в субстрате их может быть достаточно.

В дополнение к питательным веществам, которые растения получают из субстрата, необходимо проводить регулярные подкормки минеральными и органическими удобрениями. Отечественная промышленность выпускает целый ряд минеральных удобрений, которые используются для подкормки комнатных растений. Из азотных удобрений широкое применение имеет мочевина, калийная селитра. В качестве фосфорных удобрений применяют водорастворимый суперфосфат в разных формах, фосфорнокислый калий и комбинированные удобрения - метафосфат калия, аммофос, метафосфат аммония. Магний вносится в форме сернокислого магния: железо - в хелатной и сульфатной формах.

Из комплексных удобрений, сбалансированных но всем элементам минерального питания, заслуживают внимания рижские смеси А и В, жидкая смесь «Вита». Кроме них, используют хорошо растворимые удобрения с разным соотношением макроэлементов.

Широкое применение для подкормки комнатных растений имеют органические удобрения: навоз домашних животных, птичий помет, продукты отхода скотобоен -костная и кровяная мука, роговая стружка. Лучшее из них - навоз, содержащий все основные макро- и микроэлементы. Кровяная мука используется как азотное удобрение, костная мука и рогорые стружки - как фосфорное. Органические удобрения (навоз, костную муку, роговые стружки, кровь) вносят в земельные смеси при их составлении в сухом виде. Для подкормок в виде растворов все органические удобрения предварительно подготавливают. Навоз заливают водой и при периодическом перемешивании сбраживают в течение 10-12 дней, после чего процеживают и разбавляют; коровяк и конский навоз в 4-5 раз, птичий помет н 8--10 раз и больше. Кровяную муку предварительно сбражинают и поливают растения совершенно прозрачным раствором (2 г/л). Использование в качестве добавки к земельным смесям древесной золы не рекомендуется, так как ее внесение вызывает подщелачивание субстрата.

При подкормке растений учитывают их биологические особенности и состояние. Цветущие растения требовательны к фосфорным и калийным удобрениям, а мощные, хорошо развитые декоративнолистные травянистые более требовательны к азоту. Кактусы и суккуленты кормят в период роста до появления цветочной почки. Азотные удобрения лучше вносить весной, во вторую же половину лета следует увеличить в подкормках дозу фосфора и калия. Подкармливают растения здоровые, интенсивно растущие. Не рекомендуется кормить свежепересаженные, слабые и больные растения, а также растения, заканчивающие рост или находящиеся в периоде покоя. Перед подкормкой растения хорошо поливают.

Во время интенсивного роста, с весны до осени, растения нуждаются в регулярной сбалансированной подкормке органическими и (или) минеральными удобрениями (раз в 10-14 дней). При достаточном уровне освещенности в осенне-зимнее время (см. «Световой режим») некоторые растения можно подкармливать круглогодично. Пересаженные растения можно подкармливать спустя несколько недель после пересадки при условии хорошего укоренения.

Растения можно подкармливать только растворами слабой концентрации, так как высокое содержание солей в растворе может вызвать ожоги корневой системы. Традиционно применяют концентрацию раствора из расчета 2 г солей на 1 л воды: для некоторых растений (геснериевых, папоротников, многих ароидных) ее уменьшают вдвое. Практика показывает, что частые, регулярные подкормки (через полив) растворами более слабой концентрации (0,1 г/л) дают для большинства комнатных растений лучшие результаты.

Температура раствора удобрений должна превышать комнатную на 3-5 "С. В холодном помещении подкармливать растения не рекомендуется.

Наряду с обычными подкормками в течение лета несколько раз можно проводить внекорневые, опрыскивая надземную часть растений растворами мочевины или комплексных удобрений (1 г/л).

Восполнение слабо доступных для растений микроэлементов средствами листовой подкормки при помощи удобрения содержащего оптимальный набор микроэлементов в физиологически сбалансированном соотношении, являлся основополагающей задачей при разработке удобрения нового поколения - «Аквадон-Микро», которое позволяет обогатить растения микроэлементами при минимальных экономических затратах и повысить урожайность сельскохозяйственных культур.

Бор (B ) один из наиболее важных микроэлементов для растений. В клетке большая его часть представлена комплексными соединениями с полисахаридами клеточной стенки. Без бора, прежде всего, нарушаются процессы формирования репродуктивных органов, созревания семян и плодоношения. Исключительно важную функцию выполняет бор в углеводном обмене. Бор способствует лучшему использованию кальция в процессах обмена веществ в растениях. В этой связи применение «Аквадон-Микро» способствует не только увеличению урожайности, но и значительному повышению качества продукции.

Железо (Fe) участвует в функционировании основных элементов электрон-транспортных цепей дыхания и фотосинтеза, в восстановлении молекулярного азота и нитрата до аммиака, катализирует начальные этапы синтеза хлорофилла. Недостаток железа часто имеет место при переувлажнении на карбонатных, а также на плохо дренированных почвах, проявляется в пожелтении листьев (хлороз) и снижении интенсивности окислительно-восстановительных процессов.

Кобальт (Co) необходим высшим растениям для фиксации молекулярного азота бактероидами и концентрируется в клубеньках. Необходим для синтеза витамина В12. Является мощным стимулятором роста.

Магний (Mg) участвует в белковом и углеводном обмене, входит в состав хлорофилла, который при его недостатке разрушается, предотвращает хлороз. Происходит отток хлорофилла по жилкам из старых листьев к молодым. Недостаток магния проявляется в пожелтении участков листа между жилками и в снижении урожайности. Остро востребован культурами с большим выносом калия (сахарная свекла, виноград и др.)

Марганец (Mn) активизирует ферменты в растении, накапливается в листьях и участвует в фотолизе воды, являясь компонентом фотосистемы, способствует накоплению и передвижению сахаров из листьев в корнеплоды, стимулирует нарастание новых тканей в точках роста, улучшает поглощение железа из почвы и предупреждает хлороз. При его недостатке резко снижается выделение кислорода при фотосинтезе и содержание углеводов, особенно в корнях. Чувствительными культурами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, картофель, яблоня. Поступление марганца в растения снижается при низкой температуре и высокой влажности почвы, что чаще всего наблюдается ранней весной, и от этого в значительной степени страдают озимые.

Медь (Cu) входит в состав ферментов и участвует в окислительно-восстановительных превращениях, около 50% ее содержится в хлоропластах. При дефиците меди нарушается лигнификация клеточных стенок, снижается интенсивность дыхания и фотосинтеза. Признаки медного голодания проявляются чаще всего на
торфянистых и на кислых песчаных почвах. Симптомы заболевания для зерновых культур выражаются в побелении и засыхании кончиков листовой пластинки. При сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем колошение не происходит, и весь стебель постепенно засыхает.
Растения отзывчивые к меди: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпинат, люцерна, белокочанная капуста, картофель.
Медь повышает устойчивость растений против грибковых и бактериальных заболеваний, снижает заболевание зерновых культур различными видами головни, повышает устойчивость растений к бурой пятнистости. Плодовые культуры при недостатке меди заболевают, так называемой, суховершинностью или экзантемой.
Медь в растениях повышает содержание гидрофильных коллоидов, и, поэтому, в сухое и жаркое лето внекорневые подкормки этим элементом очень эффективны.

Молибден (Mo) часто называют микроэлементом азотного обмена, поскольку он входит в состав нитратредуктазы и нитрогеназы. При его недостатке, что часто бывает на кислых почвах, в тканях накапливается большое количество нитратов и нарушается нормальный обмен веществ у растений. Задерживается рост растений, тормозится синтез хлорофилла.

Сера (S). При недостатке серы наблюдается слабый рост растений и преждевременное пожелтение листьев. Больше всех других серу содержат и нуждаются в ней растения семейства крестоцветных, а также бобовые и картофель. При недостатке серы у плодовых культур листья и черешки становятся деревянистыми. В отличие от азотного голодания при серном голодании листья растений не опадают, хотя имеют бледную окраску. Недостаток ее отмечается на разных почвах, особенно на дерново-подзолистых, легких, малогумусных, а также в районах с большим количеством осадков, удаленных от промышленных центров.

Цинк (Zn) входит в состав многих ферментов, участвует в образовании хлорофилла, способствует ситнезу витаминов, поэтому подкормка цинком усиливает рост растений. Цинк играет важную роль в окислительно-восстановительных процессах, протекающих в растительных организмах. При его дефиците нарушается фосфорный обмен: возрастает содержание неорганического фосфата, замедляется его превращение в органические формы, что проявляется на растениях в хлоротичных пятнах на листьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. Применение «Аквадон-Микро» с содержанием цинка повышает урожай всех полевых, овощных и плодовых культур. При этом отмечается снижение пораженности растений грибковыми заболеваниями, повышается сахаристость плодовых и ягодных культур.

Для успешного культивирования сельскохозяйственных растений очень важна роль сбалансированности минерального питания. Избыток или недостаток какого либо элемента приводит к нарушению поступления других, что вызывает задержку ростовых процессов и снижает урожайность. Так, некоторые макроудобрения, внесенные в больших дозах, влияют на доступность для растений микроэлементов: фосфорные - цинка и меди, азотные - меди и молибдена, калийные - бора и магния. В то же время недостаток в почве микроэлементов снижает эффективность удобрений с макроэлементами

Витамины для зеленого друга

В роли "витаминов" для растений выступают микроэлементы. В начале ХХ века было установлено, что, кроме основных элементов питания растений, им нужны еще и соединения бора В, марганца Mn, меди Cu, цинка Zn, причем в очень небольшом количестве. Эти соединения назвали дополнительными элементами питания растений, или микроудобрениями, а сами элементы бор, марганец, медь, цинк -- микроэлементами. Достаточно ли в почве микроэлементов, можно определить, только наверняка зная, что основных элементов питания растений вполне хватает для их нормального роста и развития.

К открытию роли микроэлементов в растительном мире земледельцы пришли не сразу. Сначала наблюдательные крестьяне-пасечники заметили, что в одних местах при цветении гречихи (известного растения-медоноса) пчелы активно собирают мёд, а в других -- нет, причем в облюбованных пчелами гречишных посевах есть и колонии рыжих муравьев. Потом было обнаружено, что в организме рыжих муравьев содержание марганца достигает рекордного значения -- 0,05%. После тщательного исследования оказалось, что цветки гречихи, облюбованные пчелами, выделяют вдвое больше нектара, а это результат наличия в почве соединений марганца. Больше нектара -- лучше опыление, значит, и урожай обильнее.

Не прошло мимо внимания садоводов и то, что дикие яблони, растущие на почве, где обильно разрастаются фиалки, имеют отлично развитую листву и дают много яблок. А фиалки пышно растут там, где в почве достаточное количество соединений цинка.

И эти, и многие другие наблюдения, а также анализы почв с разными показателями плодородия привели к выводу: надо вносить в почву не только обычные удобрения, но и соединения микроэлементов, если их не хватает. Только там, где почвы удобрены навозом или древесной золой, не требуется подкормки микроэлементами: в золе и навозе их вполне достаточно.

Марганец, о котором шла речь выше, вносят в почву осенью в виде перманганата калия (марганцовки) или сульфата марганца; этих солей требуется 2--5 г на 1 кв. м. Можно и опрыскивать растения слабыми водными растворами марганцовки или сульфата марганца (5--10 г на ведро воды) в весенне-летний период (перед распусканием цветочных почек, во время массового цветения и в период интенсивного роста растений). Если марганца в почве слишком мало, растения дают об этом знать: листья их становятся желтоватыми из-за "межжилкового хлороза", который начинается с краев листа и идет к его центру.

Цинк вносят в почву в виде соли -- сульфата или хлорида цинка в количестве 0,3--0,5 г на 1 кв. м. Для опрыскивания растений применяют разбавленные водные растворы этих солей (2--10 г на ведро воды). Заметное количество цинка содержится в известняке и доломите и вместе с ними попадает в почву при известковании. Если цинка в почве недостаточно, растения страдают розеточностью и некрозом (омертвлением) листьев.

Бор помогает синтезу сахаров, увеличивает устойчивость растений к недостатку почвенной влаги; при "борном голодании" на яблонях появляются пустоцветы, завязи опадают, листья становятся уродливыми: края и верхушки их отмирают, а жилки приобретают красный цвет; отмирают и верхушки почек.
Бор вносят в почву в виде борной кислоты или буры; чаще всего это делают весной, смешивая эти микроудобрения с измельченной почвой или мелким песком. Для подкормки сада требуется обычно 1,5--2,0 г буры или 0,9--1,2 г борной кислоты на 1 кв. м. Чтобы опрыскать растения перед цветением и в начале массового цветения, готовят раствор, содержащий 10--30 г буры или 6--20 г борной кислоты в небольшом количестве горячей воды, а потом разбавляют этот раствор холодной водой до 10 л. Черноземы богаты бором и не нуждаются в этом микроудобрении.

Недостаток меди в почве дает о себе знать тем, что на молодых листьях яблонь появляются коричневые пятна, а кончики их белеют. Верхушки побегов увядают и отмирают, поэтому при хроническом недостатке меди в течение ряда лет плодовое дерево становится больше похоже на куст. Картофель и помидоры при нехватке меди склонны к заболеванию фитофторой. Обычно в почве вполне достаточно меди, особенно в тех местах, где применялись в качестве ядохимикатов бордосская или бургундская смеси. Однако на осушенных болотах и торфяниках этого микроэлемента может оказаться слишком мало, и тогда его недостаток восполняют, опрыскивая растения медным купоросом.

Микроэлементы в саду чаще всего вносят путем опрыскивания растений по листве - так же, как при внекорневой подкормке.
Концентрация водного раствора удобрения должна составлять:

Борная кислота 0,8--1,2 г/л

Бура 0,2--1,6 г/л

Двойной суперфосфат 1,6--2,4 г/л

Карбамид (мочевина) 3,2--4,0 г/л

Медный купорос 0,2--0,4 г/л

Молибдат аммония 0,1--0,2 г/л

Нитрат аммония 1,2--1,6 г/л

Сульфат калия 0,8--1.2 г/л

Сульфат магния 1,2--1,6 г/л

Сульфат марганца 0,4--0,8 г/л

Сульфат цинка 0,4--0,8 г/л

Хлорид калия 0,4--0,8 г/л

Напоминаем: опрыскивание надо проводить рано утром или поздно вечером, а днем -- только при облачной, но не дождливой погоде.
Чрезмерная концентрация водных растворов удобрений вредна; на листьях появляются ожоги, особенно опасные для молодых растений.
Поэтому весной содержание удобрений в водных растворах для внекорневой подкормки должно быть более низким.

ПРИМЕНЕНИЕ МИКРОУДОБРЕНИЙ НА САДОВОМ УЧАСТКЕ

Микроэлементы принимают участие в протекании всех жизненных процессов в растениях, при этом необходимы они лишь в микро дозах, в отличие от базовых компонентов питания. Биологическое значение микроэлементов огромно, так как при их отсутствии невозможно существование самой жизни. А вот их дефицит в почве проявляется, прежде всего, в угнетении всех основных функций растительного организма, в особенности тех, что отвечают за его развитие и рост. В результате растения не могут полностью раскрыть свой потенциал и дают бедный и низкокачественный урожай, а то и вовсе погибают. Именно поэтому грамотное применение микроудобрений является обязательной составной частью технологии возделывания овощных культур и позволяет увеличить их урожайность с минимальным ущербом для вашего кошелька.

Микроэлементы в питании растений несут ответственность за выполнение множества разносторонних задач, среди которых:

  • стимуляция синтеза в тканях растений всего спектра ферментов, которые позволяют им более активно использовать энергию, воду и питание (N, P, K). Это, в свою очередь, обеспечивает более высокий урожай;
  • ускорение развития растений и созревания урожая;
  • повышение устойчивости к неблагоприятным факторам внешней среды, в том числе к бактериальным и грибным болезням;
  • укрепление восстановительных сил растений после перенесенного стресса, вызванного неблагоприятной погодой, огрехами в уходе и т.п.;
  • активизация иммунитета растений.

Большая часть микроэлементов обладают каталитическими свойствами, то есть способствуют ускорению всех биохимических реакций в растении. При этом только применение комплексных микроудобрений помогает добиться вышеозначенного каталитического эффекта и нормализовать рост и развитие растений.

Микроудобрения работают оптимальным образом, если поступают в почву в сочетании с макроэлементами, особенно это относится к фосфору и цинку, нитратному азоту и молибдену.

На протяжении всего вегетационного цикла растения испытывают острую потребность в ряде микроэлементов, так как некоторые из них не реутилизируются, то есть используются растениями однократно (не переносятся из стареющих частей в более молодые). Таким образом, чтобы использование микроудобрений оказывало свое положительное воздействие на продуктивность, обмен веществ и развитие растений, их необходимо строго дозировать и вносить в почву в оптимальные сроки и при помощи наиболее эффективных методов.

Учеными-агрономами доказано, что микроэлементы не имеют себе равных именно при внекорневых подкормках и в комбинации с макроэлементами. Подобные вещества, вносимые в профилактических дозах, не аккумулируются в почве, а полностью усваиваются растениями, влияя на них исключительно благотворно. Умеренное применение микроудобрений делает растения менее подверженными состоянию физиологической депрессии, а значит, делает их более устойчивыми к разнообразным заболеваниям, что дает ощутимую прибавку к урожаю с минимальными финансовыми и трудовыми вложениями.

Конечно, каждый конкретный препарат с микроэлементами должен использоваться в строгом соответствии с рекомендациями, приведенными его производителем на упаковке. Однако существуют некоторые универсальные практические замечания, которые необходимо учитывать при работе с микроудобрениями.

При внекорневых подкормках в жаркую, и особенно в солнечную, погоду велика вероятность возникновения химического ожога краев листьев. Поэтому все обработки по листу рекомендуется проводить при плотной облачности или после заката и до восхода солнца. Если есть потребность опрыскать растения каким-либо фунгицидом, то нужно проследить, чтобы суммарная концентрация химических веществ в смеси оставалась в границах допустимого. Также в этом случае из состава необходимо исключить макроудобрения.

Вообще говоря, не стоит шарахаться при слове «химия». Научные исследования показывают, что разумное, умеренное и своевременное применение микроудобрений обеспечивает получение экологически чистой и здоровой овощной продукции. Так, в картофельных клубнях здоровых растений, не испытавших недостатка микроэлементов, регистрируется меньше опасных для здоровья человека нитратов и радионуклидов.

Микроэлементов очень много, это почти вся таблица Менделеева. Но более или менее изучено и включено в круг забот земледельцев не более шести: марганец, бор, медь, молибден, кобальт, цинк. Они, хотя и в исчезающе малых количествах, регулируют все физиологические процессы в растениях и не только в растениях, но и в животных и в человеке. Поскольку растительные продукты составляют немалую часть нашего меню, то наше здоровье в большой степени зависит от содержания в них микроэлементов. Без них продукты питания неполноценны. Об остальных микроэлементах известно гораздо меньше. Может быть, они также необходимы, но пока что приходится полагаться на природу и надеяться, что почва сама позаботится о снабжении ими растений.

Однако не так давно мы узнали, что микроэлементы могут быть не только полезными, но и вредными. Ведь тяжелые металлы, которыми нас так пугают в связи с растущим загрязнением среды, это тоже микроэлементы. Высокое их содержание в промышленных выбросах привело к тому, что их концентрация в почвах и грунтовых водах достигла токсического уровня. В связи с этим встал вопрос совершенно обратного порядка - как обезвредить их и уменьшить их поступление в растения. К наиболее опасным и распространенным загрязнителям относят ртуть, кадмий, свинец и даже медь и цинк.

Мы сосредоточим свое внимание на первом аспекте, который в последние годы также стал предметом повышенного интереса деятелей агрономической науки. Выяснилось, что в почвах многих районов обнаружен серьезный дефицит полезных микроэлементов. Этого следовало ожидать, так как в течение многих десятков и даже сотен лет их запас в почвах истощался в связи с выносом их растениями, вымыванием в грунтовые воды и с поверхностным стоком. Считали, что их количества в растениях настолько малы, что можно не заботиться о восполнении этих потерь. Но вот оказалось, что в самом главном для питания растений корнеобитаемом слое запасы почти исчерпаны и необходимо их пополнять. Когда это обнаружилось, агрономам оставалось только схватиться за голову. Трудно представить, сколько урожая в течение многих лет недобиралось из-за недостатка микроэлементов.

Микроэлементы в почве.

Микроэлементы, как и другие элементы минерального питания растений, находятся в почве в нескольких формах: водорастворимая, обменная и труднодоступная. В последнюю входят элементы в составе минералов и трудноразлагаемы х органических соединений, а также удержанные прочными связями на глинистых частицах. Корни растений непосредственно усваивают водорастворимую и частично обменную форму, которые вместе составляют фонд доступного для растений микроэлемента. Остальное служит резервом, который в результате микробиологическ ого и химического разложения, а также в результате активности самих корней понемногу пополняет фонд доступной формы.

Содержание микроэлементов в почвах определяется их содержанием в почвообразующих породах и варьирует в очень широких пределах. Если посмотреть на картосхемы, отражающие определенные анализами количества микроэлементов в почвах, мы увидим очень мелкую мозаику из участков с высоким и низким содержанием. Однако в среднем для дерново-подзолис тых почв выявлена следующая закономерность: Почвы хорошо обеспечены марганцем, средне - цинком, бором и медью, недостаточно - молибденом и кобальтом. В серых лесных почвах и черноземах наблюдается приблизительно тот же ряд. Однако, когда говорят «хорошо обеспечены», имеют в виду общее содержание всех форм элемента, из которого доступная форма составляет лишь незначительную часть. Например, общее содержание бора в дерново- подзолистой почве 2-15 мг на кг почвы, в черноземе - 4-50 мг, а доступная форма в дерново-подзолис той почве - 0,08 мг на кг почвы, в черноземе - 0,38-1,58 мг. Можно представить, как быстро растения вычерпают весь запас доступной формы. Однако этого не происходит, если в корнеобитаемом слое есть достаточный резервный фонд и активная микрофлора.

Общее содержание микроэлементов выше в тех почвах, где больше глины. Поэтому тяжелые почвы лучше обеспечены ими, чем легкие. Большинство микроэлементов хорошо растворимы в воде и в легких почвах вымываются в грунтовые воды. По той же причине на тяжелых почвах их концентрация в верхнем корнеобитаемом слое выше, чем в более глубоком слое, а в легких - наоборот.

Большая часть микроэлементов входит в состав органических веществ и минералов в разной степени поддающихся разложению. Разнообразие минералов, содержащих микроэлементы довольно велико. Например, молибден входит в состав двадцати минералов, цинк - шестидесяти четырех. Марганец ведет себя как настоящий хамелеон. В почве он без конца меняет свои обличья, величину и знак заряда своих ионов и поэтому может образовывать самые разнообразные соединения. Всего в почве насчитывают около 14 форм марганца и около 150 минералов, содержащих марганец. В зависимости от условий одна форма переходит в другую и соответственно меняется ее растворимость и доступность растениям.

Подробнее о доступной форме

Содержание в почве доступной формы микроэлементов во многом определяется их растворимостью. По этому показателю микроэлементы делятся на хорошо растворимые - марганец и бор, средне растворимые - медь и цинк и плохо растворимые - молибден и кобальт. Помимо растворимости содержание того или иного микроэлемента в почвенном растворе определяется его способностью образовывать прочные связи с глинистыми частицами и органическими веществами. В прочно-связанной форме элемент не усваивается корнями. Поэтому в богатых органикой черноземах величина доступной формы хорошо растворимого бора значительно ниже, чем хуже растворимых кобальта и меди. Органические частицы прочно удерживают ионы бора и не выпускают их в раствор.

Растворимость микроэлементов в значительной степени зависит от кислотности. Все микроэлементы, кроме молибдена лучше растворяются в кислой среде. Поэтому известкование большими дозами приводит к уменьшению доступной формы.

Установлено, что в высокоплодородно й почве с высоким содержанием органики и нейтральным рН растения очень активно поглощают все элементы питания и в том числе микроэлементы несмотря на их невысокую растворимость (Панасин В.И..1986). Это объясняется интенсивным ростом и соответственно высокой потребностью в элементах питания. Поэтому, как утверждает тот же автор, на высокоплодородны х почвах всегда необходимо внесение микроудобрений. Это не значит, что общие запасы микроэлементов в почве истощились, но значит, что почва, то-есть микрофлора, не успевает обеспечить достаточно быстрое пополнение доступного фонда, чтобы удовлетворить потребности растений.

Уровень обеспеченности микроэлементами и анализы.

Содержание доступной для корней формы называют обеспеченностью микроэлементами. Существует несколько градаций обеспеченности, причем для каждого микроэлемента это свой ряд содержаний, который определяется анализами. О надежности этих анализов сами исследователи не очень высокого мнения.. Результат анализа сильно зависит от времени взятия пробы, от условия хранения образцов, от влажности почвы и т.д. Например, содержание доступного марганца в течение сезона меняется в два-три раза. Кроме того, мы уже знаем на примере других элементов питания, что корни работают совсем не так, как реагенты (слабые кислоты, слабые соли) , которые используют для получения вытяжек из почвы изучаемого элемента. То, что не поддается слабой кислоте, корни получают с помощью ферментов, выделяемых бактериями и грибами ризосферы. О недостатке микроэлементов лучше судить по развитию растений, их внешнему виду и признакам недостаточности, которые будут описаны ниже.

Более надежный способ судить об обеспеченности микроэлементами - внести микроудобрения в почву или провести внекорневую подкормку и посмотреть, даст ли это какой-нибудь эффект. Если - да, то это означает, что какого-то микроэлемента в почве не хватает и удобрение следует вносить, если - нет, само собой разумеется, нечего тратить на них время и деньги.

Надо еще иметь в виду, что потребность в микроэлементах тем выше, чем выше плодородие почвы. На высокоплодородны х почвах, которые могут обеспечить высокий урожай, его величина может быть ограничена нехваткой микроэлементов скорее, чем средний урожай на более бедных почвах. Поэтому предлагается принять следующее правило: на высокоплодородны х почвах микроэлементы всегда в дефиците и необходимо внесение микроудобрений.

Микроэлементы в растениях.

Мы не будем вдаваться в подробности, объясняя, какую роль играют микроэлементы в жизни растений. Достаточно сказать, что микроэлементы входят в состав ферментов, играющих ключевую роль во всех жизненных процессах в растениях. Недостаток микроэлементов ведет к снижению урожая, ухудшению его качества, общему ослаблению растений и, следовательно, повышению их чувствительности к инфекциям и вредителям. Например, микроудобрения молибдена, меди, кобальта увеличивают устойчивость томатов к фитофторе, бор аналогично действует на картофель, кобальт и медь увеличивают устойчивость капусты к бактериальным болезням.

Разные виды растений отличаются по потребности в микроэлементах и по способности накапливать их в своих тканях. Для иллюстрации приведем данные Орловой Э.Д., полученные на дерново-подзолис той почве Омской области: На 100 кг урожая в зерне кукурузы содержалось марганца 600 мг, в плодах томатов - 10 000 мг, в корнеплодах столовой свеклы - 4 000 мг, в репчатом луке (луковицы) - 70 мг. Содержание меди: кукуруза - 50 мг, томаты - 3 000, столовая свекла - 170 мг, лук - 70 мг. Эти цифры говорят о том, насколько велики различия в потребности разных овощных культур в том или ином микроэлементе. Они говорят также о том, насколько малые количества микроэлементов поглощаются растениями. Недаром к ним прибавляют приставку «микро». Сравните с аналогичными данными по калию, где на формирование 100 кг урожая требуются не миллиграммы, а сотни грамм этого элемента.

Мы видим также, что микроэлементы отличаются по своей способности накапливаться в тканях растений. Польская исследовательниц а А. Кабата-Пендиас (1989) приводит следующий ряд: сильно накапливаются кадмий, бор, средне - цинк, молибден, кобальт, свинец, слабо - марганец, железо, йод. В грибах сильно накапливаются ртуть, кадмий, медь, слабее - цинк, марганец. Этот ряд полезно всегда иметь в виду, если вы собираетесь использовать микроудобрения, так как у большинства микроэлементов весьма размыта граница между полезной и токсичной концентрацией. При этом имеется в виду токсичность не столько для растений, сколько для человека, который будет потреблять эти растения в пищу. Например, известны случаи, когда избыток в тканях растений такого, казалось бы, безобидного микроэлемента как молибден, приводил к серьезным заболеваниям людей.

Микроэлементы на садовом участке.

Садоводов, конечно, не может не интересовать вопрос, достаточно ли микроэлементов в почве садового участка и не теряют ли они часть урожая от их недостатка. Определить это не просто. Есть признаки, по которым определяют острый дефицит того или иного микроэлемента, но они не очень специфичны и у разных культур разные. Чаще всего это хлороз. Недостаток марганца проявляется в хлорозе молодых листьев, молибдена - хлороз краев листьев, цинка - хлороз листовой пластинки между жилками, остановка роста, меди - белые скрученные верхушки, завядание, бора - хлороз листьев, гибель точки роста, нарушение развития. Чаще всего недостаток того или иного микроэлемента проявляется не так остро, а выражается просто в снижении урожая. Поэтому надо знать, какие культуры к недостатку какого микроэлемента наиболее чувствительны. В общем виде зависимость садовых культур от наличия в почве микроэлементов выглядит так:

К недостатку бора чувствительны - бобовые, капуста, свекла, сельдерей, картофель, томаты, огурцы, яблони, груши, подсолнечник.

К недостатку марганца чувствительны - бобовые, томаты, свекла, перец, кукуруза, плодовые и ягодные культуры, злаки.

К недостатку меди чувствительны - злаки, подсолнечник, люцерна, шпинат.

К недостатку молибдена чувствительны - все виды капусты (особенно цветная), бобовые, томаты, салат.

К недостатку цинка чувствительны - злаки, бобовые, плодовые деревья.

К недостатку кобальта чувствительны - злаки, бобовые, свекла, овощные и ягодные культуры.

Для садоводов микроэлементы обычно продаются в наборе и, наверное, это правильно, так как развитие растений чаще всего зависит не от одного элемента, а от всего комплекса. Если у вас есть сомнения, обработайте этим комплексом семена растений. Это более эффективный способ, чем внекорневая подкормка. И посмотрите, каков будет эффект. Если никакого эффекта, значит, ваша почва содержит в достаточном количестве все необходимые микроэлементы.

Микроудобрения.

При определенных обстоятельствах может возникнуть потребность внесения какого-либо одного микроэлемента. Например, при внесении больших доз извести или на щелочных почвах бор и марганец переходят в недоступную для растений форму и проявляются признаки острой недостаточности этих элементов. На торфяных почвах как правило сильно ощущается недостаток меди.

Микроудобрения можно применять тремя способами.

Первый - внесение в почву. Обычно это делают весной до посева, так как при осеннем внесении значительная часть микроэлемента вымывается из корнеобитаемого слоя. Если внести микроэлементы весной, то большая их часть поглощается почвой и переходит в недоступное состояние, образуя резерв, из которого в течение двух-трех последующих лет пополняется фонд доступного элемента. Этот метод дает наилучший результат. Для больших площадей рекомендуется вносить микроэлементы в виде обогащенной ими формы суперфосфата. Это борсуперфосфат, молибденсуперфос фат и так далее (в скобках напомним, что обычный суперфосфат содержит немало кадмия и фтора). Эти удобрения можно вносить раз в несколько лет.

На небольших площадях садовых участков чаще применяют второй способ внесения микроудобрений путем внекорневой подкормки. Для этого используют более простые растворимые формы микроудобрений: борная кислота, молибдат аммония, сульфаты меди, цинка, кобальта и марганца. Обычная доза при опрыскивании листьев - о,о5%. Подкормку проводят в период бутонизации-нача ло цветения.

Третий способ - опрыскивание семян растворами микроэлементов в следующих концентрациях: борная кислота - 0,02%, сульфат марганца - 0,06%, сульфат цинка - 0,05%, сульфат меди - 0,2%, сульфат кобальта - 0,2%, молибдат аммония - 0,3% (по В.И.Панасину, 1986).

Для тех, кто применяет органические удобрения вряд ли может возникнуть необходимость в использовании микроудобрений, так как и навоз и компост достаточно богаты микроэлементами.

Еще один вид микроудобрений, еще не признанный нашей агрономической наукой, за рубежом уже находит признание и применение в органических хозяйствах. Это мука из горной породы. Если исходить из представления о том, что в корнеобитаемом слое постепенно исчерпывается запас доступных для разложения минералов, что называют деминерализацией почвы, то само собой разумеется, надо попытаться этот запас пополнить. Нет смысла выворачивать глубокой вспашкой на поверхность еще не тронутый разложением и богатый минералами нижний подстилающий слой. Такие идеи были, но их осуществление приводило к тому, что почва теряла свой самый драгоценный верхний плодородный слой. Гораздо проще внести минералы сверху. Это ведет к пополнению резервного фонда всех элементов минерального питания и в том числе микроэлементов.

Для этой цели годится мука из разных пород в том числе из базальта, диабаза, гнейса, порфирина, монтмориллонита. Очень важно добиться того, чтобы порода была измельчена очень тонко до состояния настоящей муки или пыли, только тогда она будет доступна для разложения микроорганизмами . Почву опыливают тонким слоем этой пыли, Точные дозы не называют, но расход приблизительно 40 г на 100 кв.м. Еще лучше смешать эту муку с компостом или навозом. Немецкие фермеры рассказывают настоящие чудеса о действии муки из горной породы. С ее помощью удалось восстановить в Германии умирающие леса, поврежденные кислыми дождями и загрязнением почвы тяжелыми металлами. Скот, который пасли на обработанных этой мукой пастбищах, отличался необыкновенным здоровьем и высокой продуктивностью. Такой же результат давало добавлением муки в корма. Наиболее пылкие энтузиасты добавляли эту муку в свою пищу по две чайные ложки в день и гордо рассказывали, как постепенно седина отступает, сменяясь естественным цветом волос. Все эти чудеса приписывают действию содержащихся в муке микроэлементов.

Для хорошего, полноценного питания растениям, кроме главных - азота, фосфора, калия и магния - важны такие элементы, как бор, цинк, марганец, молибден, иногда йод, кобальт, никель, которые называются микроэлементами, т.к. требуются растениям в количествах, измеряемых тысячными и даже стотысячными долями процента.

Микроэлементы защищают растения многих заболеваний, усиливают процессы оплодотворения, плодообразования, усвоения питательных веществ, содействую тем самым лучшей урожайности, питательной ценности плодов и овощей (повышается содержание витаминов, крахмала и сахара). Ниже описано, насколько важны отдельные микроэлементы для растений.

Бор увеличивает количество завязей, повышает содержание в плодах таких витаминов, как А и С, излечивает заболевания плодов - «опробкование» и защищает их от преждевременного опадения. Если бора недостаёт, то у растений отмирает верхушечная почка, появляется хлороз (пожелтение) верхних листьев, ослабляется цветение, плоды приобретают уродливую форму. Чаще всего от недостатка бора страдают цветная капуста, свекла и плодовые растения, особенно растущие на сильно известкованных и карбонатных землях.

Марганец

Марганец играет очень важную роль в процессах фотосинтеза, дыхания растений, в процессе появления витамина С и сахаров. При нехватке марганца на верхних листьях возникают светло-зеленые либо серые пятна, листья желтеют между жилками, в дальнейшем наблюдается отмирание поврежденных тканей. Марганцевое голодание чаще проявляется на картофеле, капусте, бобовых, а из плодовых растений - на вишне, малине, абрикосе, сливе, яблоне, персике, чаще на известкованных и карбонатных землях. На кислых же землях может быть даже переизбыток данного микроэлемента.

Медь улучшает образование белка в растениях, повышает устойчивость к морозам, засухо- жаростойкость, активизирует сопротивляемость растений к грибным и вирусным заболеваниям. При нехватке меди на молодых частях растений наблюдается хлороз листьев, потеря ими тургора и увядание.

Болезнь яблони, вызванная недостатком данного микроэлемента, называется «летнее усыхание». Более чувствительные к недостатку меди такие плодовые, как яблоня, груша и слива. Меди недостаёт в торфяных и песчаных сильнокислых землях.

Цинк входит в состав большинства растительных ферментов, которые участвуют в процессах оплодотворения, дыхания, синтеза белка и углеводов. Главные признаки цинкового голодания - это пожелтение и пятнистость листьев, их измельчание и заметная асимметричность. Оно чаще заметно у вишни, абрикоса, яблони, груши, сливы, винограда и кукурузы.

Не богаты цинком почвы с нейтральной и щелочной реакцией, которые обычно встречаются в Средней Азии и южных районах страны, а также в Прибалтике. Нехватка цинка проявляется на известкованных и карбонатных почвах при внесении больших доз фосфорных удобрений.

Молибден

Молибден важен для усвоения азота из воздуха клубеньковыми бактериями, которые развиваются на корнях бобовых растений, а также бактериями, свободно живущими в земле. Участвует он и в азотном обмене растений.

Когда растениям не хватает молибдена, у них нарушается азотный обмен, что, в свою очередь, приводит к ослаблению зеленой окраски листвы, возникновению пятнистости или же пожелтению края листьев (у огурцов). Очень чувствительны к молибдену цветная и кочанная капуста, салат, томаты и бобовые культуры.

Этого микроэлемента бывает недостаточно на кислых почвах с рН меньше 5. При внесении извести необходимость растений в молибдене понижается либо пропадает вообще.

Растения получают микроэлементы из земли, но, оказывается, не все из них могут быть использованы. Так же не во всех почвах они содержатся в необходимых пропорциях. Поэтому огородники вместе с обычными удобрениями, в состав которых входят азот, фосфор, калий, задействуют и удобрения с микроэлементами.

Большое количество микроэлементов находится в древесной золе и навозе. Если их нет, то можно использовать минеральные удобрения.

Микроэлементы в удобрениях содержатся в легко подвижном, усвояемом состоянии в виде хелатов.

При применении комплексных удобрений с микроэлементами либо только микроудобрений важно строго соблюдать инструкцию по применению, не забывая, что переизбыток их тоже вреден для растений, как и их недостаток.

ЖЕЛЕЗО
Железо играет ведущую роль среди всех содержащихся в растениях тяжелых металлов.
Об этом свидетельствует уже тот факт, что оно содержится в тканях растений в количе-
ствах более значительных, чем другие металлы. Так содержание железа в листьях дос-
тигает сотых долей процента, за ним следует марганец, концентрация цинка выражается
уже в тысячных долях, а содержание меди не превышает десятитысячных процента .
Органические соединения, в состав которых входит железо, необходимы в биохи-
мических процессах, происходящих при дыхании и фотосинтезе. Это объясняется очень
высокой степенью их каталитических свойств. Неорганические соединения железа также
способны катализировать многие биохимические реакции, а в соединении с органиче-
скими веществами каталитические свойства железа возрастают во много раз.
Каталитическое действие железа связано с его способностью менять степень
окисления. Атом железа окисляется и восстанавливается сравнительно легко, поэтому
соединения железа являются переносчиками электронов в биохимических процессах. В
основе реакций, происходящих при дыхании растений лежит процесс переноса электро-
нов. Процесс этот осуществляется ферментами - дегидрогенезами и цитохромами, со-
держащими железо.
Железу принадлежит особая функция - непременное участие в биосинтезе хло-
рофилла. Поэтому любая причина, ограничивающая доступность железа для растений,
приводит к тяжелым заболеваниям, в частности к хлорозу.
При нарушении и ослаблении фотосинтеза и дыхания вследствие недостаточного
образования органических веществ, из которых строится организм растения, и дефицита
органических резервов, происходит общее расстройство обмена веществ. Поэтому при
остром недостатке железа неизбежно наступает гибель растений. У деревьев и кустар-
ников зеленая окраска верхушечных листьев исчезает полностью, они становятся почти
белыми, постепенно усыхают.
МАРГАНЕЦ
Роль марганца в обмене веществ у растений сходна с функциями магния и желе-
за. Марганец активирует многочисленные ферменты, особенно при фосфоролировании.
Поскольку марганец активизирует ферменты в растении, его недостаток сказывается на
многих процессах обмена веществ, в частности на синтезе углеводов и протеинов .
Признаки дефицита марганца у растений чаще всего наблюдаются на карбонат-
ных, сильноизвесткованных, а также на некоторых торфянистых и других почвах при рН
выше 6,5.
Недостаток марганца становится заметным сначала на молодых листьях по более
светлой зеленой окраске или по обесцвечиванию (хлорозу). В отличие от железистого
хлороза у однодольных в нижней части пластинки листьев появляются серые, серо-зе-
леные или бурые, постепенно сливающиеся пятна, часто с более темным окаймлением.
Признаки марганцевого голодания у двудольных такие же, как при недостатке железа,
только зеленые жилки обычно не так резко выделяются на пожелтевших тканях. Кроме
того, очень быстро появляются бурые некротические пятна. Листья отмирают даже бы-
стрее, чем при недостатке железа.
Марганцевая недостаточность у растений обостряется при низкой температуре и
высокой влажности. Видимо, в связи с этим озимые хлеба наиболее чувствительны к его
недостатку ранней весной.
Марганец участвует не только в фотосинтезе, но и в синтезе витамина С. При не-
достатке марганца понижается синтез органических веществ, уменьшается содержание
хлорофилла в растениях, и они заболевают хлорозом.
Симптомы марганцевой недостаточности у растений проявляются чаще всего на
карбонатных, торфянистых и других почвах с высоким содержанием органического ве-
щества. Недостаток марганца у растений проявляется в появлении на листьях мелких
хлоротичных пятен, располагающихся между жилками, которые остаются зелеными. У
злаков хлоротичные пятна имеют вид удлиненных полосок, а у свеклы они располага-
ются мелкими пятнами по листовой пластинке. При марганцевом голодании отмечается
также слабое развитие корневой системы растений. Наиболее чувствительными культу-
рами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, кар-
тофель, яблоня, черешня и малина. У плодовых культур наряду с хлорозным заболева-
нием листьев отмечается слабая облиственность деревьев, более раннее, чем обычно
опадание листьев, а при сильном марганцевом голодании - засыхание и отмирание вер-
хушек веток.
Физиологическая роль марганца в растениях связана, прежде всего, с его уча-
стием в окислительно-восстановительных процессах, проходящих в живой клетке, он
входит в ряд ферментных систем и принимает участие в фотосинтезе, дыхании, угле-
водном и белковом обмене и т.п..
Изучение эффективности марганцевых удобрений на различных почвах Украины пока-
зали, что урожай сахарной свеклы и содержание в ней сахара на их фоне был выше, бо-
лее высоким был при этом и урожай зерновых .

ЦИНК
Все культурные растения по отношению к цинку делятся на 3 группы:
- очень чувствительные (кукуруза, лен, хмель, виноград, плодовые);
- средне чувствительные (соя, фасоль, кормовые бобовые, горох, сахарная свекла,
подсолнечник, клевер, лук, картофель, капуста, огурцы, ягодники);
- слабо чувствительные (овес, пшеница, ячмень, рожь, морковь, рис, люцерна).
Недостаток цинка для растений чаще всего наблюдается на песчаных и карбо-
натных почвах. .Мало доступного цинка на торфяниках, а также на некоторых мало-
плодородных почвах. Недостаток цинка сильнее всего сказывается на образовании се-
мян, чем на развитии вегетативных органов. Симптомы цинковой недостаточности ши-
роко встречаются у различных плодовых культур (яблоня, черешня, японская слива,
орех, пекан, абрикос, авокадо, лимон, виноград). Особенно страдают от недостатка цин-
ка цитрусовые культуры.
Физиологическая роль цинка в растениях очень разнообразна. Он оказывает боль-
шое влияние на окислительно-восстановительные процессы, скорость которых при его
недостатке заметно снижается. Дефицит цинка ведет к нарушению процессов пре-
вращения углеводородов. Установлено, что при недостатке цинка в листьях и корнях то-
мата, цитрусовых и других культур, накапливаются фенольные соединения, фитосте-
ролы или лецитины, уменьшается содержание крахмала. .
Цинк входит в состав различных ферментов: карбоангидразы, триозофосфатде-
гидрогеназы, пероксидазы, оксидазы, полифенолоксидазы и др.
Обнаружено, что большие дозы фосфора и азота усиливают признаки недоста-
точности цинка у растений и что цинковые удобрения особенно необходимы при внесе-
нии высоких доз фосфора .
Значение цинка для роста растений тесно связано с его участием в азотном об-
мене. Дефицит цинка приводит к значительному накоплению растворимых азотных со-
единений - аминов и аминокислот, что нарушает синтез белка. Многие исследования
подтвердили, что содержание белка в растениях при недостатке цинка уменьшается.
Под влиянием цинка повышается синтез сахарозы, крахмала, общее содержание
углеводов и белковых веществ. Применение цинковых удобрений увеличивает содержа-
ние аскорбиновой кислоты, сухого вещества и хлорофилла. Цинковые удобрения повы-
шают засухо-, жаро- и холодоустойчивость растений .
Агрохимическими исследованиями установлена необходимость цинка для большого
количества видов высших растений. Его физиологическая роль в растениях много-
сторонняя. Цинк играет важную роль в окислительно-восстановительных процессах,
протекающих в растительном организме, он является составляющей частью ферментов,
непосредственно участвует в синтезе хлорофилла, влияет на углеводный обмен в рас-
тениях и способствует синтезу витаминов .
При цинковой недостаточности у растений появляются хлоротичные пятна на ли-
стьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. У
яблони, груши и ореха при недостатке цинка развивается так называемая розеточная
болезнь, выражающаяся в образовании на концах ветвей мелких листьев, которые рас-
полагаются в форме розетки . При цинковом голодании плодовых почек закладыва-
ется мало. Урожайность семечковых резко падает. Черешня еще более чувствительна к
недостатку цинка, чем яблоня и груша. Признаки цинкового голодания у черешни прояв-
ляются в появлении мелких, узких и деформированных листьев. Хлороз вначале появ-
ляется на краях листьев и постепенно распространяется к средней жилке листа. При
сильном развитии заболевания весь лист становится желтым или белым .
Из полевых культур цинковая недостаточность чаще всего проявляется на куку-
рузе в виде образования белого ростка или побеления верхушки. Показателем цинкового
голодания у бобовых (фасоль, соя) является наличие хлороза на листьях, иногда асим-
метрическое развитие листовой пластинки. Недостаток цинка для растений чаще всего
наблюдается на песчаных и супесчаных почвах с низким его содержанием, а также на
карбонатных и старопахотных почвах.
Применение цинковых удобрений повышает урожай всех полевых, овощных и
плодовых культур. При этом отмечается снижение пораженности растений грибковыми
заболеваниями, повышается сахаристость плодовых и ягодных культур .
БОР
Бор необходим для развития меристемы. Характерными признаками недостатка бора
являются отмирание точек роста, побегов и корней, нарушения в образовании и разви-
тии репродуктивных органов, разрушение сосудистой ткани и т.д. Недостаток бора очень
часто вызывает разрушение молодых растущих тканей.
Под влиянием бора улучшаются синтез и перемещение углеводов, особенно са-
харозы, из листьев к органам плодоношения и корням. Известно, что однодольные рас-
тения менее требовательны к бору, чем двудольные.
В литературе имеются данные о том, что бор улучшает передвижение ростовых
веществ и аскорбиновой кислоты из листьев к органам плодоношения. Установлено, что
цветки наиболее богаты бором по сравнению с другими частями растений. Он играет
существенную роль в процессах оплодотворения. При исключении его из питательной
среды пыльца растений плохо или даже совсем не прорастает. В этих случаях внесение
бора способствует лучшему прорастанию пыльцы, устраняет опадание завязей и усили-
вает развитие репродуктивных органов.
Бор играет важную роль в делении клеток и синтезе белков и является необходи-
мым компонентом клеточной оболочки. Исключительно важную функцию выполняет бор
в углеводном обмене. Недостаток его в питательной среде вызывает накопление саха-
ров в листьях растений. Это явление наблюдается у наиболее отзывчивых к борным
удобрениям культур. Бор способствует и лучшему использованию кальция в процессах
обмена веществ в растениях. Поэтому при недостатке бора растения не могут нор-
мально использо-вать кальций, хотя последний находится в почве в достаточном коли-
честве. Установлено, что размеры поглощения и накопления бора растениями возрас-
тают при повышении калия в почве.
При недостатке бора в питательной среде наблюдается нарушение анатомиче-
ского строения растений, например, слабое развитие ксилемы, раздробленность флоз-
мы основной паренхимы и дегенерация камбия. Корневая система развивается слабо,
так как бор играет значительную роль в ее развитии.
Недостаток бора ведет не только к понижению урожая сельскохозяйственных
культур, но и к ухудшению его качества. Следует отметить, что бор необходим расте-
ниям в течение всего вегетационного периода. Исключение бора из питательной среды в
любой фазе роста растения приводит к его заболеванию.
Внешние признаки борного голодания изменяются в зависимости от вида расте-
ний, однако, можно привести ряд общих признаков, которые характерны для большин-
ства высших растений . При этом наблюдается остановка роста корня и стебля, за-
тем появляется хлороз верхушечной точки роста, а позже при сильном борном голода-
нии следует полное его отмирание. Из пазух листьев развиваются боковые побеги, рас-
тение усиленно кустится, однако вновь образовавшиеся побеги, вскоре тоже останавли-
ваются в росте и повторяются все симптомы заболевания главного стебля. Особенно
сильно страдают от недостатка бора репродуктивные органы растений, при этом боль-
ное растение может совершенно не образовывать цветков или их образу-ется очень ма-
ло, отмечается пустоцвет опадание завязей.
В этой связи применение борсодержащих удобрений и улучшение обеспечения
растений этим элементом способствует не только увеличению урожайности, но и значи-
тельному повышению качества продукции. Улучшение борного питания ведет к повыше-
нию сахаристости сахарной свеклы, повышению содержания витамина С и сахаров
в плодово-ягодных культурах, томатах и т. д. .
Наиболее отзывчивы на борные удобрения сахарная и кормовая свекла, люцерна и кле-
вер (семенные посевы), овощные культуры, лен, подсолнечник, конопля, эфиромаслич-
ные и зерновые культуры.
МЕДЬ
Различные сельскохозяйственные культуры обладают неодинаковой чувствительностью
к недостатку меди. Растения можно расположить в следующем порядке по убывающей
отзывчивости на медь: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпи-
нат, люцерна и белокочанная капуста. Средней отзывчивостью отличаются картофель,
томат, клевер красный, фасоль, соя. Сортовые особенности растений в пределах одного
и тоже вида имеют большое значение и существенно влияют на степень проявления
симптомов медной недостаточности. .
Недостаток меди часто совпадает с недостатком цинка, а на песчаных почвах
также с недостатком магния. Внесение высоких доз азотных удобрений усиливает по-
требность растений в меди и способствует обострению симптомов медной недостаточ-
ности.
Несмотря на то, что ряд других макро- и микроэлементов оказывает большое
влияние на скорость окислительно-восстановительных процессов, действие меди в этих
реакциях является специфическим, и она не может быть заменена каким-либо другим
элементом. Под влиянием меди повышается как активность пероксисилазы, так и сни-
жение активности синтетических центров и ведет к накоплению растворимых углеводов,
аминокислот и других продуктов распада сложных органических веществ. Медь является
составной частью ряда важнейших окислительных ферментов - полифенолксидазы, ас-
корбинатоксидазы, лактазы, дегидрогеназы и др. Все указанные ферменты осуществ-
ляют реакции окисления переносом электронов с субстрата к молекулярному кислороду,
который является акцептором электронов. В связи с этой функцией валентность меди в
окислительно-восстановительных реакциях изменяется от двухвалентного до однова-
лентного состояния и обратно.
Медь играет большую роль в процессах фотосинтеза. Под влиянием меди повы-
шается как активность пароксидазы, так и синтез белков, углеводов и жиров. При ее не-
достатке разрушение хлорофилла происходит значительно быстрее, чем при нормаль-
ном уровне питания растений медью, наблюдается понижение активности синтетических
процессов, что ведет к накоплению растворимых углеводов, аминокислот и других про-
дуктов распада сложных органических веществ .
При питании аммиачным азотом недостаток меди задерживает включение азота в
белок, пептоны и пептиды уже в первые часы после внесения азотной подкормки. Это
указывает на особо важную роль меди при применении аммиачного азота.
Характерной особенностью действия меди является то, что этот микроэлемент
повышает устойчивость растений против грибковых и бактериальных заболеваний. Медь
снижает заболевание зерновых культур различными видами головни, повышает устой-
чивость растений к бурой пятнистости и т.д. .
Признаки медной недостаточности проявляются чаще всего на торфянистых и на
кислых песчаных почвах. Симптомы заболевания растений при недостатке в почве меди
проявляются для зерновых в побелении и засыхании кончиков листовой пластинки. При
сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем ко-
лошения не происходит и весь стебель постепенно засыхает.
Плодовые культуры при недостатке меди заболевают так называемой суховер-
шинностью или экзантемой. При этом на листовых пластинках слив и абрикосов между
жилками развивается отчетливый хлороз.
У томатов при недостатке меди отмечается замедление роста побегов, слабое
развитие корней, появление темной синевато-зеленой окраски листьев и их закручива-
ние, отсутствие образования цветков.
Все указанные выше заболевания сельскохозяйственных культур при применении
медных удобрений полностью устраняются, и продуктивность растений резко возрастает
.
МОЛИБДЕН
В настоящее время молибден по своему практическому значению выдвинут на одно из
первых мест среди других микроэлементов, так как этот элемент оказался весьма важ-
ным фактором в решении двух кардинальных проблем современного сельского хозяй-
ства - обеспечения растений азотом, а сельскохозяйственных животных белком .
В настоящее время установлена необходимость молибдена для роста растений
вообще. При недостатке молибдена в тканях растений накапливается большое количе-
ство нитратов и нарушается нормальный азотный обмен.
Молибден участвует в углеводородном обмене, в обмене фосфорных удобрений,
в синтезе витаминов и хлорофилла, влияет на интенсивность окислительно-восстанови-
тельных реакций. После обработки семян молибденом в листьях повышается содержа-
ние хлорофилла, каротина, фосфора и азота.
Установлено, что молибден входит в состав фермента нитратрадуктазы,
осуществляющей восстановление нитратов в растениях. Активность этого фермента зависит
от уровня обеспеченности растений молибденом, а так же от форм азота, применяемых
для их питания. При недостатке молибдена в питательной среде резко снижается актив-
ность нитратрадуктазы.
Внесение молибдена отдельно и совместно с бором в различные фазы роста го-
роха улучшало активность аскорбинатоксидазы, полифенолоксидазы и пароксидазы.
Наибольшее влияние на на активность аскорбинатоксидазы и полифенолоксидазы ока-
зывает молибден, а активность пароксидазы - бор на фоне молибдена.
Нитратредуктаза при участии молибдена катализирует восстановление нитратов
и нитритов, а нитритредуктаза также при участии молибдена восстанавливает нитраты
до аммиака. Этим объясняется положительное действие молибдена на повышение со-
держания белков в растениях.
Под влиянием молибдена в растениях увеличивается также содержание углево-
дов, каротина и аскорбиновой кислоты, повышается содержание белковых веществ.
Воздействием молибдена в растениях увеличивается содержание хлорофилла и повы-
шается интенсивность фотосинтеза.
Недостаток молибдена приводит к глубокому нарушению обмена веществ у рас-
тений. Симптомам молибденовой недостаточности предшествует в первую очередь из-
менение в азотном обмене у растений. При недостатке молибдена тормозится процесс
биологической редукции нитратов, замедляется синтез амидов, аминокислот и белков.
Все это приводит не только к снижению урожая, но и к резкому ухудшению его качества
.
Значение молибдена в жизни растений довольно разнообразно. Он активизирует
процессы связывания атмосферного азота клубеньковыми бактериями, способствует
синтезу и обмену белковых веществ в растениях. Наиболее чувствительны к недостатку
молибдена такие культуры как соя, зерновые бобовые культуры, клевер, многолетние
травы. Потребность растений в молибденовых удобрениях обычно возрастает на кислых
почвах, имеющих рН ниже 5,2.
Физиологическая роль молибдена связана с фиксацией атмосферного азота, ре-
дукцией нитратного азота в растениях, участием в окислительно-восстановительных
процессах, углеводном обмене, в синтезе хлорофилла и витаминов .
Недостаток молибдена в растениях проявляется в светло-зеленой окраске ли-
стьев, при этом сами листья становятся узкими, края их закручиваются внутрь и посте-
пенно отмирают, появляется крапчатость, жилки листа остают-ся светло-зелеными. Не-
достаток молибдена выражается, прежде всего, в появлении желто-зеленой окраски ли-
стьев, что является следствием ослабления фиксации азота атмосферы, стебли и че-
решки растений становятся красновато-бурыми .
Результаты опытов по изучению молибденовых удобрений показали, что при их
применении повышается урожай сельскохозяйственных культур и его качество, но осо-
бенно важна его роль в интенсификации симбиотической азотофиксации бобовыми куль-
турами и улучшении азотного питания последующих культур .
КОБАЛЬТ
Кобальт необходим для усиления азотофиксирующей деятельности клубеньковых бак-
терий Он входит в состав витамина В12, который имеется в клубеньках, оказывает за-
метное положительное действие на активность фермента гидрогеназы, а также увели-
чивает активность нитратредуктазы в клубеньках бобовых культур.
Этот микроэлемент влияет на накопление сахаров и жиров в растениях. Кобальт
благоприятно действует на процесс синтеза хлорофилла в листьях растений, уменьшает
его распад в темноте, увеличивает интенсивность дыхания, содержание аскорбиновой
кислоты в растениях. В результате внекорневых подкормок кобальтом в листьях расте-
ний повышается общее содержание нуклеиновых кислот. Кобальт оказывает заметное
положительное действие на активность фермента гидрогеназы, а также увеличивает ак-
тивность нитратредуктазы в клубеньках бобовых культур. Доказано положительное дей-
ствие кобальта на томаты, горох, гречиху, ячмень, овес и другие культуры. .
Кобальт принимает активное участие в реакциях окисления и восстановления,
стимулирует цикл Кребса и оказывает положительное влияние на дыхание и энергети-
ческий обмен, а также биосинтез белка нуклеиновых кислот. Благодаря своему положи-
тельному влиянию на обмен веществ, синтез белков, усвоение углеводов и т.п. он явля-
ется могучим стимулятором роста.
Положительное действие кобальта на сельскохозяйственные культуры проявля-
ется в усилении азотофиксации бобовыми, повышении содержания хлорофилла в ли-
стьях и витамина В12 в клубеньках. .
Применение кобальта в виде удобрений под полевые культуры повышало урожай
сахарной свеклы, зерновых культур и льна. При удобрении кобальтом винограда повы-
шался урожай его ягод, их сахаристость и снижалась кислотность.
В таблице 1 приведены обобщенные характеристики влияния микроэлементов на
функции растений, поведение их в почве при различных условиях, симптомы их дефи-
цита и его последствия.
Приведенный обзор физиологической роли микроэлементов для высших растений
свидетельствует о том, что недостаток почти каждого из них ведет к проявлению в той или иной степени хлороза у растений.
На засоленных почвах применение микроэлементов усиливает поглощение рас-
тениями питательных веществ из почвы и снижается поглощение хлора, повышается на-
копление сахаров и аскорбиновой кислоты, наблюдается некоторое увеличение содер-
жания хлорофилла и повышается продуктивность фотосинтеза. Кроме этого необходимо
отметить и фунгицидные свойства микроэлементов, подавление грибковых заболеваний
при обработке семян и при внесении их по вегетирующим растениям.

Роль микроэлементов в жизни растений

Железо (Fe) – играет ключевую роль в синтезе хлорофилла. Участвует в фиксации атмосферного азота, в восстановлении нитратов до аммиака, в обмене углеводов, белков, ауксинов, серы, в поступлении и передвижении пластических веществ по растению, в росте и делении клеток. Недостаток железа приводит к пожелтению листьев, в дальнейшем растение гибнет.

Медь (Cu) – усиливает образование углеводов, белков, жиров, витамина С. Повышает интенсивность дыхания и фотосинтез, повышает морозо- , засухо- и жароустойчивость, устойчивость к заболеваниям, улучшает образование плодов и семян, усиливает поступление азота и магния. При недостатке меди ухудшается опыление растений, появляется склонность злаковых культур к полеганию.

Цинк (Zn) – увеличивает содержание сахарозы, крахмала и белков, витамина С, активирует фитогормон ИУК (ауксин, гормон роста), усиливает рост корневой системы, повышает водоудерживающую способность, морозо- , засухо- и жароустойчивость. Недостаток цинка наиболее негативно сказывается на образовании семян. Особенно чувствительны к недостатку цинка кукуруза, лен, плодовые.

Марганец (Mn) – участвует в фотосинтезе, активизирует гормон ауксин и ряд ферментов, уменьшает содержание нитратов в продукции, повышает содержание витамина С. Недостаток марганца негативно сказывается на многих процессах обмена веществ, в частности на синтезе углеводов и протеинов. Наиболее требовательные к марганцу культуры – свекла, картофель, зерновые.

Бор (B) – улучшает углеводный и белковый обмен, опыление и оплодотворение цветков, предотвращает появление гнили сердечка у сахарной свёклы и парши у картофеля, усиливает отток продуктов фотосинтеза в клубни, корнеплоды и луковицы. При недостатке бора нарушаются процессы деления клетки и образования генеративных органов. Недостаток бора сильнее всего сказывается на таких культурах как рапс, сахарная свекла, бобовые.

Молибден (Mo) – улучшает азотный обмен и синтез белков, уменьшает содержание нитратов. Необходим в усвоении азота воздуха, в синтезе нуклеиновых кислот. Увеличивает содержание хлорофилла, повышает интенсивность фотосинтеза. Увеличивает содержание углеводов, каротина, аскорбиновой кислоты, белка. Недостаток молибдена приводит к снижению устойчивости растений к различным заболеваниям. Чувствительны к недостатку молибдена бобовые культуры.

Ванадий (V) – повышает содержание хлорофилла, скорость фотосинтеза (при сильном освещении), является катализатором фиксации атмосферного азота

Кобальт (Co) – усиливает азотфиксацию, входит в состав витамина В12, увеличивает содержание хлорофилла и каротиноидов. Участвует в азотном обмене – биосинтезе белка и нуклеиновых кислот. Повышает содержание воды, особенно в засуху.

Хром (Cr) – активирует ряд ферментов, повышает иммунитет и устойчивость к стрессам. При недостатке наблюдается снижение роста и накопления биомассы, пожелтение и опадание листьев.

Селен (Se) – повышает устойчивость к заболеваниям и стрессам (за счёт накопления аминокислоты пролина). При недостатке у растений задерживаются рост и цветение, растения теряют устойчивость к переохлаждениям, становятся чувствительными к гербицидам.

Никель (Ni) – необходим для предотвращения накопления токсических доз мочевины, так как входит в состав разлагающего ее фермента. Стабилизирует рибосомы и усиливает рост.

Литий (Li) – повышает устойчивость к болезням, усиливает фотохимическую активность хлоропластов. Улучшает транспорт калия, усиливает рост корневой системы. Повышает содержание витаминов группы В.



Понравилась статья? Поделитесь с друзьями!