Ведение железо и его соединения. Способы получения железа

ЖЕЛЕЗО (лат. Ferrum), Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не установлено. Природное железо представляет собой смесь четырех нуклидов с массовыми числами 54 (содержание в природной смеси 5,82% по массе), 56 (91,66%), 57 (2,19%) и 58 (0,33%). Конфигурация двух внешних электронных слоев 3s 2 p 6 d 6 4s 2 . Обычно образует соединения в степенях окисления +3 (валентность III) и +2 (валентность II). Известны также соединения с атомами железа в степенях окисления +4, +6 и некоторых других.

В периодической системе Менделеева железо входит в группу VIIIВ. В четвертом периоде, к которому принадлежит и железо, в эту группу входят, кроме железа, также кобальт (Co) и никель (Ni) . Эти три элемента образуют триаду и обладают сходными свойствами.

Радиус нейтрального атома железа 0,126 нм, радиус иона Fe 2+ — 0,080 нм, иона Fe 3+ — 0,067 нм. Энергии последовательной ионизации атома железа 7,893, 16,18, 30,65, 57, 79 эВ. Сродство к электрону 0,58 эв. По шкале Полинга электроотрицательность железа около 1,8.

Железо высокой чистоты — это блестящий серебристо-серый, пластичный металл, хорошо поддающийся различным способам механичской обработки.

Физические и химические свойства: при температурах от комнатной и до 917°C, а также в интервале температур 1394-1535°C существует -Fe с кубической объемно центрированной решеткой, при комнатной температуре параметр решетки а = 0,286645 нм. При температурах 917-1394°C устойчиво -Fe с кубической гранецентрированной решеткой Т (а = 0,36468 нм). При температурах от комнатной до 769°C (так называемая точка Кюри) железо обладает сильными магнитными свойствами (оно, как говорят, ферромагнитно), при более высоких температурах железо ведет себя как парамагнетик. Иногда парамагнитное -Fe с кубической объемно центрированной решеткой, устойчивое при температурах от 769 до 917°C, рассматривают как модификацию железа, а -Fe, устойчивое при высоких температурах (1394-1535°C), называют по традиции -Fe (представления о существовании четырех модификаций железа возникли тогда, когда еще не существовал рентгеноструктурный анализ и не было объективной информации о внутреннем строении железа). Температура плавления 1535°C, температура кипения 2750°C, плотность 7,87 г/см 3 . Стандартный потенциал пары Fe 2+ /Fe 0 –0,447В, пары Fe 3+ /Fe 2+ +0,771В.

При хранении на воздухе при температуре до 200°C железо постепенно покрывается плотной пленкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближенно ее химическую формулу можно записать как Fe 2 О 3 ·xН 2 О.

С кислородом (O) железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe 2 О 3 , при сгорании в чистом кислороде — оксид Fe 3 О 4 . Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeО. При нагревании порошка серы (S) и железа образуется сульфид, приближенную формулу которого можно записать как FeS.

Железо при нагревании реагирует с галогенами . Так как FeF 3 нелетуч, железо устойчиво к действию фтора (F) до температуры 200-300°C. При хлорировании железа (при температуре около 200°C) образуется летучий FeСl 3 . Если взаимодействие железа и брома (Br) протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr 3 . При нагревании FeСl 3 и, особенно, FeBr 3 отщепляют галоген и превращаются в галогениды железа (II). При взаимодействии железа и иода (I) образуется иодид Fe 3 I 8 .

При нагревании железо реагирует с азотом (N) , образуя нитрид железа Fe 3 N, с фосфором (P) , образуя фосфиды FeP, Fe 2 P и Fe 3 P, с углеродом (C) , образуя карбид Fe 3 C, с кремнием (Si) , образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое железо реагирует с монооксидом углерода СО, причем образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO) 5 . Известны также карбонилы железа составов Fe 2 (CO) 9 и Fe 3 (CO) 12 . Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава .

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. В концентрированной серной и азотной кислотах железо не растворяется, так как прочная оксидная пленка пассивирует его поверхность.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа (II):

Fe + 2HCl = FeCl 2 + H 2

Fe + H 2 SO 4 = FeSO 4 + H 2

При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа (III):

2Fe + 4H 2 SO 4 = Fe 2 (SO 4) 3 + SO 2 + 4H 2 O

Оксид железа (II) FeО обладает основными свойствами, ему отвечает основание Fe(ОН) 2 . Оксид железа (III) Fe 2 O 3 слабо амфотерен, ему отвечает еще более слабое, чем Fe(ОН) 2 , основание Fe(ОН) 3 , которое реагирует с кислотами:

2Fe(ОН) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O

Гидроксид железа (III) Fe(ОН) 3 проявляет слабо амфотерные свойства; он способен реагировать только с концентрированными растворами щелочей:

Fe(ОН) 3 + КОН = К

Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причем в осадок выпадает гидроксид железа (III) Fe(OH) 3 .

Соединения железа (III) в растворах восстанавливаются металлическим железом:

Fe + 2FeCl 3 = 3FeCl 2

При хранении водных растворов солей железа (II) наблюдается окисление железа (II) до железа (III):

4FeCl 2 + O 2 + 2H 2 O = 4Fe(OH)Cl 2

Из солей железа (II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа (II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 О.

Железо (III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO 4) 2 — железокалиевые квасцы, (NH 4)Fe(SO 4) 2 — железоаммонийные квасцы и т.д.

При действии газообразного хлора (Cl) или озона на щелочные растворы соединений железа (III) образуются соединения железа (VI) — ферраты, например, феррат (VI) калия (K) : K 2 FeO 4 . Имеются сообщения о получении под действием сильных окислителей соединений железа (VIII).

Для обнаружения в растворе соединений железа (III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами CNS – . При взаимодействии ионов Fe 3+ с анионами CNS – образуется ярко-красный роданид железа Fe(CNS) 3 . Другим реактивом на ионы Fe 3+ служит гексацианоферрат (II) калия (K) : K 4 (ранее это вещество называли желтой кровяной солью). При взаимодействии ионов Fe 3+ и 4– выпадает ярко-синий осадок.

Реактивом на ионы Fe 2+ в растворе может служить раствор гексацианоферрат (III) калия (K) K 3 , ранее называвшегося красной кровяной солью. При взаимодействии ионов Fe 3+ и 3– выпадает ярко-синий осадок такого же состава, как и в случае взаимодействия ионов Fe 3+ и 4– .

Сплавы железа с углеродом: железо используется главным образом в сплавах, прежде всего в сплавах с углеродом (C) — различных чугунах и сталях. В чугуне содержание углерода выше 2,14 % по массе (обычно — на уровне 3,5-4%), в сталях содержание углерода более низкое (обычно на уровне 0.8-1 %).

Чугун получают в домнах. Домна представляет собой гигантский (высотой до 30-40 м) усеченный конус, полый внутри. Стенки домны изнутри выложены огнеупорным кирпичом, толщина кладки составляет несколько метров. Сверху в домну вагонетками загружают обогащенную (освобожденную от пустой породы) железную руду, восстановитель кокс (каменный уголь специальных сортов, подвергнутый коксованию — нагреванию при температуре около 1000°C без доступа воздуха), а также плавильные материалы (известняк и другие), способствующие отделению от выплавляемого металла примесей — шлака. Снизу в домну подают дутье (чистый кислород (O) или воздух, обогащенный кислородом (O)). По мере того, как загруженные в домну материалы опускаются, их температура поднимается до 1200-1300°C. В результате реакций восстановления, протекающих главным образом с участием кокса С и СО:

Fe 2 O 3 + 3C = 2Fe + 3CO;

Fe 2 O 3 + 3CО = 2Fe + 3CO 2

возникает металлическое железо, которое насыщается углеродом (C) и стекает вниз.

Этот расплав периодически выпускают из домны через специальное отверстие — клетку — и дают расплаву застыть в специальных формах. Чугун бывает белый, так называемый передельный (его используют для получения стали) и серый, или литьевой. Белый чугун — это твердый раствор углерода (C) в железе. В микроструктуре серого чугуна можно различить микрокристаллики графита. Из-за наличия графита серый чугун оставляет след на белой бумаге.

Чугун хрупок, при ударе он колется, поэтому из него нельзя изготавливать пружины, рессоры, любые изделия, которые должны работать на изгиб.

Твердый чугун легче расплавленного, так что при его затвердевании происходит не сжатие (как обычно при затвердевании металлов и сплавов), а расширение. Эта особенность позволяет изготавливать из чугуна различные отливки, в том числе использовать его как материал для художественного литья.

Если содержание углерода (C) в чугуне снизить до 1,0-1,5%, то образуется сталь. Стали бывают углеродистыми (в таких сталях нет других компонентов, кроме Fe и C) и легированными (такие стали содержат добавки хрома (Cr) , никеля (Ni) , молибдена (Mo) , кобальта (Co) и других металлов, улучшающие механические и иные свойства стали).

Стали получают, перерабатывая чугун и металлический лом в кислородном конвертере, в электродуговой или мартеновской печах. При такой переработке снижается содержание углерода (C) в сплаве до требуемого уровня, как говорят, избыточный углерод (C) выгорает.

Физические свойства стали существенно отличаются от свойств чугуна: сталь упруга, ее можно ковать, прокатывать. Так как сталь, в отличие от чугуна, при затвердевании сжимается, то полученные стальные отливки подвергают обжатию на прокатных станах. После прокатки в объеме металла исчезают пустоты и раковины, появившиеся при затвердевании расплавов.

Производство сталей имеет в России давние глубокие традиции, и полученные нашими металлургами стали отличаются высоким качеством.

История получения железа: железо играло и играет исключительную роль в материальной истории человечества. Первое металлическое железо, попавшее в руки человека, имело, вероятно, метеоритное происхождение. Руды железа широко распространены и часто встречаются даже на поверхности Земли, но самородное железо на поверхности крайне редко. Вероятно, еще несколько тысяч лет назад человек заметил, что после горения костра в некоторых случаях наблюдается образование железа из тех кусков руды, которые случайно оказались в костре. При горении костра восстановление железа из руды происходит за счет реакции руды как непосредственно с углем, так и с образующимся при горении оксидом углерода (II) СО. Возможность получения железа из руд существенно облегчило обнаружение того факта, что при нагревании руды с углем возникает металл, который далее можно дополнительно очистить при ковке. Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тысячелетии до нашей эры. Период с 9 – 7 века до нашей эры, когда у многих племен Европы и Азии развилась металлургия железа, получил название железного века, пришедшего на смену бронзовому веку. Усовершенствование способов дутия (естественную тягу сменили меха) и увеличение высоты горна (появились низкошахтные печи - домницы) привело к получению чугуна, который стали широко выплавлять в Западной Европе с 14 века. Полученный чугун переделывали в сталь. С середины 18 века в доменном процессе вместо древесного угля начали использовать каменно-угольный кокс. В дальнейшем способы получения железа из руд были значительно усовершенствованы, и в настоящее время для этого используют специальные устройства — домны, кислородные конвертеры, электродуговые печи.

Нахождение в природе: в земной коре железо распространено достаточно широко — на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красные железняки (руда гематит, Fe 2 O 3 ; содержит до 70% Fe), магнитные железняки (руда магнетит, Fe 3 О 4 ; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO 2 ·n H 2 O), а также шпатовые железняки (руда сидерит, карбонат железа, FeСО 3 ; содержит около 48% Fe). В природе встречаются также большие месторождения пирита FeS 2 (другие названия — серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10 –5 — 1·10 –8 % железа.

Применение железа, его сплавов и соединений: чистое железо имеет довольно ограниченное применение. Его используют при изготовлении сердечников электромагнитов, как катализатор химических процессов, для некоторых других целей. Но сплавы железа — чугун и сталь — составляют основу современной техники. Находят широкое применение и многие соединения железа. Так, сульфат железа (III) используют при водоподготовке, оксиды и цианид железа служат пигментами при изготовлении красителей и так далее.

Биологическая роль: железо присутствует в организмах всех растений и животных как микроэлемент , то есть в очень малых количествах (в среднем около 0,02%). Однако железобактерии, использующие энергию окисления железа (II) в железо (III) для хемосинтеза, могут накапливать в своих клетках до 17-20% железа. Основная биологическая функция железа — участие в транспорте кислорода (O) и окислительных процессах. Эту функцию железа выполняет в составе сложных белков — гемопротеидов, простетической группой которых является железопорфириновый комплекс — гем. Среди важнейших гемопротеидов дыхательные пигменты гемоглобин и миоглобин, универсальные переносчики электронов в реакциях клеточного дыхания, окисления и фотосинеза цитохромы, ферменты каталоза и пероксида, и других. У некоторых беспозвоночных железосодержащие дыхательные пигменты гелоэритрин и хлорокруорин имеют отличное от гемоглобинов строение. При биосинтезе гемопротеидов железо переходит к ним от белка ферритина, осуществляющего запасание и транспорт железа. Этот белок, одна молекула которого включает около 4 500 атомов железа, концентрируется в печени, селезенке, костном мозге и слизистой кишечника млекопитающих и человека. Суточная потребность человека в железе (6-20 мг) с избытком покрывается пищей (железом богаты мясо, печень, яйца, хлеб, шпинат, свекла и другие). В организме среднего человека (масса тела 70 кг) содержится 4,2 г железа, в 1 л крови — около 450 мг. При недостатке железа в организме развивается железистая анемия, которую лечат с помощью препаратов, содержащих железо. Препараты железа применяются и как общеукрепляющие средства. Избыточная доза железа (200 мг и выше) может оказывать токсичное действие. Железо также необходимо для нормального развития растений, поэтому существуют микроудобрения на основе препаратов железа.

Подробности Категория: Просмотров: 9555

ЖЕЛЕЗО , Fe, химический элемент, атомный вес 55,84, порядковый номер 26; расположен в VIII группе периодической системы в одном ряду с кобальтом и никелем, температура плавления - 1529°С, температура кипения - 2450°С; в твердом состоянии имеет синевато-серебристый цвет. В свободном виде железо встречается лишь в метеоритах, которые, однако, содержат примеси Ni, Р, С и других элементов. В природе соединения железа широко распространены повсеместно (почва, минералы, гемоглобин животных, хлорофилл растений), гл. обр. в виде окислов, гидратов окислов и сернистых соединений, а также углекислого железа, из которых и состоит большинство железных руд.

Химически чистое железо получается путем нагревания щавелевокислого железа, при чем при 440°С сначала получается матовый порошок закиси железа, обладающий способностью воспламеняться на воздухе (т. н. пирофорическое железо); при последующем восстановлении этой закиси образовавшийся порошок приобретает серый цвет и теряет пирофорические свойства, переходя в металлическое железо. При восстановлении закиси железа при 700°С железо выделяется в виде мелких кристаллов, которые затем сплавляются в вакууме. Другой способ получения химически чистого железа состоит в электролизе раствора солей железа, например FeSО 4 или FeCl 3 в смеси с MgSО 4 , СаСl 2 или NH 4 Cl (при температуре выше 100°С). Однако, при этом железо окклюдирует значительное количество электролитического водорода, вследствие чего приобретает твердость. При прокаливании до 700°С водород выделяется, и железо становится мягким и режется ножом, как свинец (твердость по шкале Моса - 4,5). Весьма чистое железо может быть получено алюминотермическим путем из чистой окиси железо. (см. Алюминотермия). Хорошо образованные кристаллы железа встречаются редко. В полостях больших кусков литого железа иногда образуются кристаллы октаэдрической формы. Характерным свойством железа является его размягчаемость, тягучесть и ковкость при температуре, значительно более низкой, чем температура плавления. При действии на железо крепкой азотной кислоты (не содержащей низших окислов азота), железо покрывается налетом окислов и становится нерастворимым в азотной кислоте.

Соединения железа

Легко соединяясь с кислородом, железо образует несколько окислов: FeO - закись железа, Fe 2 О 3 - окись железа, FeО 3 - ангидрид железной кислоты и FeО 4 – ангидрид наджелезной кислоты. Кроме того, железо образует еще окисел смешанного типа Fe 3 О 4 - закись-окись железа, т. н. железную окалину. В сухом воздухе, однако, железо не окисляется; ржавчина представляет собой водные окислы железа, образующиеся при участии влаги воздуха и СО 2 . Закиси железа FeO соответствует гидрат Fe(OH) 2 и целый ряд солей двухвалентного железа, способных при окислении переходить в соли окиси железа, Fe 2 О 3 , в которой железо проявляет себя в качестве трехвалентного элемента; на воздухе гидрат закиси железа, отличающийся сильными восстановительными свойствами, легко окисляется, переходя в гидрат окиси железа. Гидрат закиси железа слабо растворяется в воде, и раствор этот имеет явственно щелочную реакцию, свидетельствующую об основном характере двухвалентного железа. Окись железа встречается в природе (см. Железный сурик), искусственно же м. б. получена в виде красного порошка при прокаливании железного порошка и при обжигании серного колчедана для получения сернистого газа. Безводная окись железа, Fе 2 O 3 , м. б. получена в двух модификациях, причем переход одной из них в другую происходит при нагревании и сопровождается значительным выделением тепла (самонакаливанием). При сильном прокаливании Fe 2 О 3 выделяет кислород и переходит в магнитную закись-окись, Fe 3 О 4 . При действии щелочей на растворы солей трехвалентного железа выпадает осадок гидрата Fe 4 О 9 H 6 (2Fe 2 О 3 ·3Н 2 О); при кипячении его с водой образуется гидрат Fe 2 О 3 ·Н 2 О, трудно растворяющийся в кислотах. Железо образует соединения с различными металлоидами: с С, Р, S, с галоидами, а также и с металлами, например с Mn, Cr, W, Сu и др.

Соли железа разделяются на закисные - двухвалентного железа (ферро-соли) и на окисные - трехвалентного железа (ферри-соли).

Соли закисного железа . Хлористое железо , FeCl 2 , получается при действии сухого хлора на железо, в виде бесцветных листочков; при растворении железа в НСl хлористое железо получается в виде гидрата FeCl 2 ·4H 2 O и применяется в виде водных или спиртовых растворов в медицине. Йодистое железо , FeJ 2 , получается из железа и йода под водой в виде зеленых листочков и применяется в медицине (Sirupus ferri jodati); при дальнейшем действии йода образуется FeJ 3 (Liquor ferri sesquijodati).

Сернокислое закисное железо, железный купорос , FeSО 4 ·7H 2 О (зеленые кристаллы) образуется в природе в результате окисления пирита и серных колчеданов; эта соль образуется также в качестве побочного продукта при производстве квасцов; при выветривании или при нагревании до 300°С переходит в белую безводную соль - FeSО 4 ; образует также гидраты с 5, 4, 3, 2 и 1 частицами воды; легко растворяется в холодной воде (в горячей до 300%); раствор имеет кислую реакцию вследствие гидролиза; на воздухе окисляется, особенно легко в присутствии другого окисляющегося вещества, например, щавелевокислых солей, которые FeSО 4 вовлекает в сопряженную реакцию окисления, обесцвечивает КМnO 4 ; при этом процесс протекает по следующему уравнению:

2KMnO 4 + 10FeSO 4 +8H 2 SO 4 = 2MnSО 4 + K 2 SО 4 + 5Fe 2 (SO 4) 2 + 8Н 2 О.

Для этой цели, однако, применяется более постоянная на воздухе двойная соль Мора (NH 4) 2 Fe(SО 4) 2 ·6Н 2 О. Железный купорос применяется в газовом анализе для определения окиси азота, поглощаемой раствором FeSО 4 с образованием окрашенного в тёмно-бурый цвет комплекса (FeNО)SО 4 , а также для получения чернил (с дубильными кислотами), в качестве протравы при крашении, для связывания зловонных газов (H 2 S, NH 3) в отхожих местах и т. д.

Закисные соли железа применяются в фотографии благодаря их способности восстанавливать серебряные соединения на скрытом изображении, запечатлевшемся на фотографической пластинке.

Углекислое железо , FeCO 3 , встречается в природе в виде сидерита или железного шпата; получаемое осаждением водных растворов закисных солей железа карбонатами углекислое железо легко теряет СО 2 и окисляется на воздухе до Fe 2 О 3 .

Бикарбонат железа , H 2 Fe(CО 3) 2 , растворим в воде и встречается в природе в железистых источниках, из которых, окисляясь, выделяется на поверхности земли в виде гидрата окиси железа, Fe(OH) 3 , переходящего в бурый железняк.

Фосфорнокислое железо , Fе 3 (РO 4) 2 ·8Н 2 O, белый осадок; встречается в природе слегка окрашенный, вследствие окисления железа, в голубой цвет, в виде вивианита .

Соли окисного железа . Хлорное железо , FeCl 3 (Fe 2 Cl 6), получается при действии избытка хлора на железо в виде гексагональных красных табличек; хлорное железо на воздухе расплывается; из воды кристаллизуется в виде FeCl 3 ·6Н 2 О (желтые кристаллы); растворы имеют кислую реакцию; при диализе постепенно гидролизуется почти до конца с образованием коллоидного раствора гидрата Fe(OH) 3 . FeCl 3 растворяется в спирте и в смеси спирта с эфиром, при нагревании FeCl 3 ·6H 2 О разлагается на НСl и Fe 2 O 3 ; применяется в качестве протравы и в качестве кровоостанавливающего средства (Liquor ferri sesquichlorati).

Сернокислое окисное железо , Fe 2 (SO 4) 3 , в безводном состоянии имеет желтоватый цвет, в растворе сильно гидролизуется; при нагревании раствора выпадают основные соли; железные квасцы, MFe(SO 4) 2 ·12H 2 O, М - одновалентный щелочной металл; лучше всех кристаллизуются аммонийные квасцы, NH 4 Fe(SО 4) 2 ·12Н 2 О.

Окисел FeО 3 - ангидрид железной кислоты, равно как и гидрат этого окисла H 2 FeО 4 - железная кислота - в свободном состоянии не м. б. получены в виду их крайней непрочности; но в щелочных растворах могут существовать соли железной кислоты, ферраты (например K 2 FeО 4), образующиеся при накаливании железного порошка с селитрой или КСlO 3 . Известна также малорастворимая бариевая соль железной кислоты BaFeО 4 ; т. о., железная кислота в некоторых отношениях весьма напоминает серную и хромовую кислоты. В 1926 г. киевским химиком Горалевичем описаны соединения окисла восьмивалентного железа - наджелезного ангидрида FeО 4 , полученные при сплавлении Fe 2 О 3 с селитрой или бертолетовой солью в виде калиевой соли наджелезной кислоты K 2 FeО 5 ; FeО 4 - газообразное вещество, не образующее с водой наджелезной кислоты H 2 FeО 5 , которая, однако, м. б. выделена в свободном состоянии разложением кислотами соли K 2 FeО 5 . Бариевая соль BaFeO 5 ·7Н 2 О, а также кальциевая и стронциевая соли получены Горалевичем в виде неразлагающихся белых кристаллов, выделяющих лишь при 250-300°С воду и при этом зеленеющих.

Железо дает соединения: с азотом - азотистое железо (нитрид) Fe 2 N при нагревании порошка железа в струе NH 3 , с углеродом - карбид Fe 3 C при насыщении в электрической печи железа углем. Кроме того, изучен целый ряд соединений железа с окисью углерода - карбонилы железа , например, пентакарбонил Fe(CO) 5 - слегка окрашенная жидкость с около 102,9°С (при 749 мм, удельный вес 1,4937), затем оранжевое твердое тело Fe 2 (CO) 9 , нерастворимое в эфире и хлороформе, с удельным весом 2,085.

Большое значение имеют цианистые соединения железа . Кроме простых цианидов Fe(CN) 2 и Fe(CN) 3 , железо образует целый ряд комплексных соединений с цианистыми солями, как, например, соли железистосинеродистой кислоты H 4 Fe(CN) 6 , и соли железосинеродистой кислоты H 3 Fe(CN) 6 , например, красная кровяная соль, которые, в свою очередь вступают в реакции обменного разложения с солями закисного и окисного железа, образуя окрашенные в синий цвет соединения - берлинскую лазурь и турнбуллову синь. При замене в солях железистосинеродистой кислоты H 4 Fe(CN) 6 одной группы CN на одновалентные группы (NO, NО 2 , NH 3 , SО 3 , СО) образуются пруссо-соли, например, нитропруссид натрия (нитрожелезистосинеродистый натрий) Na 2 ·2Н 2 О, получаемый действием дымящей HNО 3 на K 4 Fe(CN) 6 , с последующей нейтрализацией содой, в виде рубиново-красных кристаллов, отделяемых кристаллизацией от образующейся одновременно селитры; соответствующая нитрожелезистосинеродистая кислота H 2 кристаллизуется также в виде тёмно-красных кристаллов. Нитропруссид натрия применяется в качестве чувствительного реактива на сероводород и сернистые металлы, с которыми он дает кроваво-красное, переходящее затем в синее, окрашивание. При действии медного купороса на нитропруссид натрия образуется бледно-зелёный нерастворимый в воде и в спирте осадок, применяемый для испытания эфирных масел.

Аналитически железо обнаруживается действием на его соли, в щелочном растворе, желтой кровяной соли. Соли трехвалентного железа образуют при этом синий осадок берлинской лазури. Соли двухвалентного железа образуют синий осадок турнбулловой сини при действии на них красной кровяной соли. С роданистым аммонием NH 4 CNS соли трехвалентного железа образуют растворимое в воде с кроваво-красным окрашиванием родановое железо Fe(CNS) 3 ; с таннином соли окисного железа образуют чернила. Интенсивной окраской отличаются также и медные соли железистосинеродистой кислоты, которые находят себе применение (увахромовый метод) в цветной фотографии. Из соединений железа, применяемых в медицине, кроме упомянутых галоидных соединений железа, имеют значение: металлическое железо (F. hydrogenio reductum), лимоннокислое железо (F. Citricum - 20% Fe), экстракт яблочнокислого железа (Extractum ferri pomatum), железный альбуминат (Liquor ferri albuminatum), ферратин - белковое соединение с 6% железа; ферратоза - раствор ферратина, карниферрин - соединение железа с нуклеином (30% Fe); ферратоген из нуклеина дрожжей (1% Fe), гематоген - 70%-ный раствор гемоглобина в глицерине, гемол - гемоглобин , восстановленный цинковой пылью.

Физические свойства железа

Имеющиеся в литературе числовые данные, характеризующие различные физические свойства железа, колеблются вследствие трудности получения железа в химически чистом состоянии. Поэтому наиболее достоверными являются данные, полученные для электролитического железа, в котором общее содержание примесей (С, Si, Mn, S, Р) не превышает 0,01-0,03%. Приводимые ниже данные в большинстве случаев и относятся к такому железу. Для него температура плавления равна 1528°С ± 3°С (Руер и Клеспер, 1914 г.), a температура кипения ≈ 2450°С. В твердом состоянии железо существует в четырех различных модификациях - α, β, γ и δ, для которых довольно точно установлены следующие температурные пределы:

Переход железа из одной модификации в другую обнаруживается на кривых охлаждения и нагревания критическими точками, для которых приняты следующие обозначения:

Указанные критические точки представлены на фиг. 1 схематическими кривыми нагревания и охлаждения. Существование модификаций δ-, γ- и α-Fe считается в настоящее время бесспорным, самостоятельное же существование β-Fe оспаривается вследствие недостаточно резкого отличия его свойств от свойств α-Fe. Все модификации железа кристаллизуются в форме куба, причем α, β и δ имеют пространственную решетку центрированного куба, а γ-Fe - куба с центрированными гранями. Наиболее отчетливые кристаллографические характеристики модификаций железа получены на рентгеновских спектрах, как это представлено на фиг. 2 (Вестгрин, 1929 г.). Из приведенных рентгенограмм следует, что для α-, β- и δ-Fe линии рентгеновского спектра одни и те же; они соответствуют решетке центрированного куба с параметрами 2,87, 2,90 и 2,93 Ȧ, а для γ-Fe спектр соответствует решетке куба с центрированными гранями и параметрами 3,63-3,68 А.

Удельный вес железа колеблется в пределах от 7,855 до 7,864 (Кросс и Гилль, 1927 г.). При нагревании удельный вес железа падает вследствие теплового расширения, для которого коэффициенты увеличиваются с температурой, как показывают данные табл. 1 (Дризен, 1914 г.).

Понижение коэффициентов расширения в интервалах 20-800°С, 20-900°С, 700-800°С и 800- 900°С объясняется аномалиями в расширении при переходе через критические точки А С2 и А С3 . Этот переход сопровождается сжатием, особенно резко выраженным в точке А С3 , как показывают кривые сжатия и расширения на фиг. 3. Плавление железа сопровождается расширением его на 4,4% (Гонда и Энда, 1926 г.). Теплоемкость железа довольно значительна по сравнению с другими металлами и выражается для разных температурных интервалов величинами от 0,11 до 0,20 Сal, как показывают данные табл. 2 (Обергоффер и Гроссе, 1927 г.) и построенная на основании их кривая (фиг. 4).

В приведенных данных превращения А 2 , А 3 , А 4 и плавление железа обнаруживаются настолько отчетливо, что для них легко вычисляются тепловые эффекты: А 3 ... + 6,765 Сal, А 4 ... + 2,531 Сal, плавление железа... - 64,38 Сal (по С. Умино, 1926 год, - 69,20 Сal).

Железо характеризуется приблизительно в 6-7 раз меньшей теплопроводностью, чем серебро, и в 2 раза меньшей, чем алюминий; а именно, теплопроводность железа равняется при 0°С - 0,2070, при 100°С - 0,1567, при 200°С - 0,1357 и при 275°С - 0,1120 Cal/см·сек·°С. Наиболее характерными свойствами железа являются магнитные, выражаемые целым рядом магнитных констант, получаемых при полном цикле намагничивания железа. Эти константы для электролитического железа выражаются следующими значениями в гауссах (Гумлих, 1909 и 1918 гг.):

При переходе через точку А с2 ферромагнитные свойства железа почти исчезают и м. б. обнаружены только при очень точных магнитных измерениях. Практически β-, γ- и δ-модификации считаются немагнитными. Электропроводность для железа при 20°С равняется R -1 мо м/мм 2 (где R - электрическое сопротивление железа, равное 0,099 Ω мм 2 /м). Температурный коэффициент электросопротивления а0-100° х10 5 колеблется в пределах от 560 до 660, где

Холодная обработка (прокатка, ковка, протяжка, штамповка) очень заметно отражается на физических свойствах железа. Так, %-ное изменение их при холодной прокатке выражается следующими цифрами (Геренс, 1911 г.): коэрцитивное напряжение +323%, магнитный гистерезис +222%, электросопротивление + 2%, удельный вес - 1%, магнитная проницаемость - 65%. Последнее обстоятельство делает понятными те значительные колебания физических свойств, которые наблюдаются у разных исследователей: к влиянию примесей нередко присоединяется еще и влияние холодной механической обработки.

О механических свойствах чистого железа известно очень мало. Электролитическое железо, сплавленное в пустоте, обнаружило: временное сопротивление на разрыв 25 кг/мм 2 , удлинение - 60%, сжатие поперечного сечения - 85%, твердость по Бринеллю - от 60 до 70.

Структура железа находится в зависимости от содержания в нем примесей (хотя бы и в незначительных количествах) и предварительной обработки материала. Микроструктура железа, как и других чистых металлов, состоит из более или менее крупных зерен (кристаллитов), носящих здесь название феррита

Размеры и резкость их очертаний зависят гл. обр. от скорости охлаждения железа: чем последняя меньше, тем больше развиты зерна и тем резче их контуры. С поверхности зерна бывают окрашены чаще всего неодинаково вследствие неодинаковой кристаллографии, ориентировки их и неодинакового травящего действия реактивов по разным направлениям в кристалле. Нередко зерна бывают вытянуты в одном направлении в результате механической обработки. Если обработка происходила при невысоких температурах, то на поверхности зерен появляются линии сдвигов (линии Неймана), как результат скольжения отдельных частей кристаллитов по плоскостям их спайности. Эти линии являются одним из признаков наклепа и тех изменений в свойствах, о которых было упомянуто выше.

Железо в металлургии

Термин железо в современной металлургии присваивается лишь сварочному железу, т. е. малоуглеродистому продукту, получаемому в тестообразном состоянии при температуре, не достаточной для плавления железа, но высокой настолько, что отдельные частицы его хорошо свариваются друг с другом, давая после проковки однородный мягкий продукт, не принимающий закалки. Железо (в указанном смысле слова) получается: 1) непосредственно из руды в тестообразном состоянии сыродутным процессом; 2) таким же способом, но при более низкой температуре, недостаточной для сваривания частиц железа; 3) переделом чугуна кричным процессом; 4) переделом чугуна пудлингованием.

1) Сыродутный процесс в наст. время применяется лишь малокультурными народами и в таких местностях, куда не может (по отсутствию удобных путей сообщения) проникнуть американское или европейское железо, получаемое современными способами. Процесс ведется в открытых сыродутных горнах и печах. Сырыми материалами для него служат железная руда (обыкновенно бурый железняк) и древесный уголь. Уголь засыпается в горн в той половине его, куда подводится дутье, руда же - кучей, с противоположной стороны. Образующаяся в толстом слое горящего угля окись углерода проходит через всю толщу руды и, имея высокую температуру, восстанавливает железо. Восстановление руды совершается постепенно - с поверхности отдельных кусков к сердцевине. Начинаясь с верхних частей кучи, оно ускоряется по мере продвижения руды в область более высокой температуры; окись железа при этом переходит сначала в магнитную окись, затем в закись, и, наконец, на поверхности кусков руды появляется металлическое железо. В то же время землистые примеси руды (пустая порода) соединяются с еще не восстановленной закисью железа и образуют легкоплавкий железистый шлак, который вытапливается через щели металлической оболочки, образующей как бы скорлупу в каждом куске руды. Будучи нагретыми до белокалильного жара, эти скорлупки свариваются друг с другом, образуя на дне горна губчатую массу железа - крицу, проникнутую шлаком. Для отделения от последнего вынутую из горна крицу разрубают на несколько частей, из которых каждую проковывают, подваривая, после охлаждения в том же горне в полосы или прямо в изделия (вещи домашнего обихода, оружие). В Индии сыродутный процесс ведется и теперь в сыродутных печах, которые отличаются от горнов только несколько большей высотой - около 1,5 м. Стены печей делаются из глиняной массы (не кирпича) и служат лишь одну плавку. Дутье подается в печь через одну фурму мехами, приводимыми в движение ногами или руками. В пустую печь загружается некоторое количество древесного угля («холостая колоша»), а затем попеременно, отдельными слоями, руда и уголь, при чем количество первой постепенно увеличивается до тех пор, пока не дойдет до определенного опытом отношения к углю; вес всей засыпанной руды определяется желаемым весом крицы, который, вообще говоря, незначителен. Процесс восстановления идет так же, как и в горне; железо тоже полностью не восстанавливается, и получающаяся на лещади крица заключает в себе много железистого шлака. Крицу извлекают разломкой печи и разрубают на части, в 2-3 кг весом. Каждую из них нагревают в кузнечном горне и обрабатывают под молотом; в результате получается превосходное мягкое железо, служащее, между прочим, материалом для изготовления индийской стали «вуц» (булат). Состав его следующий (в %):

Ничтожное содержание элементов - примесей железа - или совершенное их отсутствие объясняется чистотой руды, неполнотой восстановления железа и низкой температурой в печи. Расход древесного угля благодаря малым размерам горнов и печей и периодичности их действия очень велик. В Финляндии, Швеции и на Урале железо выплавляли в сыродутной печи Хусгавеля, в которой можно было регулировать ход процесса восстановления и насыщения железа углеродом; расход угля в ней - до 1,1 на единицу железа, выход которого достигал 90% содержания его в руде.

2) В будущем нужно ожидать развития производства железа непосредственно из руды не применением сыродутного процесса, а восстановлением железа при температуре, недостаточной для образования шлака и даже для спекания пустой породы руды (1000°С). Преимущества такого процесса - возможность применения низкосортных видов топлива, устранение флюса и расхода тепла на плавление шлака.

3) Получение сварочного железа переделом чугуна кричным процессом ведется в кричных горнах гл. обр. в Швеции (у нас - на Урале). Для передела выплавляют специальный чугун, т. н. ланкаширский, дающий наименьший угар. В составе его: 0,3-0,45% Si, 0,5-0,6% Mn, 0,02 Р, <0,01% S. Такой чугун в изломе кажется белым или половинчатым. Горючим в кричных горнах может служить только древесный уголь.

Процесс ведется след. обр.: горн, освобожденный от крицы, но с оставшимся на донной доске спелым шлаком конца процесса, наполняется углем, гл. обр. сосновым, на который укладывается подогретый продуктами горения чугун в количестве 165-175 кг (на 3/8 м 2 поперечного сечения горна приходится 100 кг садки чугуна). Поворотом клапана в воздухопроводе дутье направляется через трубы, расположенные в подсводовом пространстве горна, и нагревается здесь до температуры в 150-200°С, ускоряя т. о. плавление чугуна. Плавящийся чугун все время поддерживается (при помощи ломов) на угле выше фурм. При такой работе вся масса чугуна подвергается окислительному действию кислорода воздуха и углекислоты, проходя зону горения в виде капель. Большая поверхность их способствует быстрому окислению железа и его примесей - кремния, марганца и углерода. Смотря по содержанию этих примесей, чугун в большей или меньшей степени теряет их, прежде чем соберется на дне горна. Т. к. в шведском горне переделывается малокремнистый и маломарганцовый чугун, то, проходя горизонт фурм, он теряет весь свой Si и Мn (окислы которых с закисью железа образуют основной шлак) и значительную часть углерода. Плавление чугуна продолжается 20-25 мин. По окончании этого процесса пускают в горн холодное дутье. Осевший на дно горна металл начинает реагировать с находящимися там же спелыми шлаками, содержащими в себе большой избыток (по сравнению с количеством кремнезема) окислов железа - Fe 3 О 4 и FeO, окисляющих углерод с выделением окиси углерода, что приводит в кипение весь металл. Когда металл загустеет (от потери углерода) и «сядет товаром», последний поднимают ломами выше фурм, пускают опять горячее дутье и плавят «товар».

Во время вторичного плавления металл окисляется кислородом как дутья, так и шлаков, которые из него вытапливаются. На дно горна после первого подъема падает металл, достаточно мягкий для того, чтобы из отдельных наиболее спелых частей его собирать крицу. Но прежде, при употреблении кремнистых сортов чугуна, приходилось прибегать ко второму и даже третьему подъему товара, что, конечно, уменьшало производительность горна, увеличивало расход горючего и угар железа. На результаты работы оказывали влияние расстояние фурм от донной доски (глубина горна) и наклон фурм: чем круче поставлена фурма и меньше глубина горна, тем значительнее действие окислительной атмосферы на металл. Более пологий наклон фурм, как и большая глубина горна, уменьшает непосредственное действие кислорода дутья, предоставляя, т. о., большую роль действию шлака на примеси железа; окисление ими идет медленнее, но зато без угара железа. При всяких данных условиях наивыгоднейшее положение фурм относительно донной доски определяется опытом; в современном шведском горне глаз фурмы устанавливается на расстоянии 220 мм от донной доски, а наклон фурм меняется в тесных пределах - от 11 до 12°.

Получающаяся на дне горна крица заключает в себе, в отличие от сыродутной, очень мало механически увлеченного шлака; что же касается химических примесей железа, то Si, Мn и С м. б. полностью удалены (указываемое анализами ничтожное содержание Si и Мn входит в состав механической примеси - шлака), а сера - только отчасти, окисляясь дутьем во время плавления. В это же время окисляется и фосфор, уходя в шлак в виде фосфорножелезной соли, но последняя затем восстанавливается углеродом, и конечный металл может заключать в себе даже относительно больше фосфора (от угара железа), чем исходный чугун. Вот почему для получения первоклассного металла для экспорта в Швеции берут в передел исключительно чистый в отношении Р чугун. Вынутую из горна готовую крицу разрубают на три части (каждая 50-55 кг) и обжимают их под молотом, придавая вид параллелепипеда.

Длительность процесса передела в шведском кричном горне - от 65 до 80 мин.; в сутки получается от 2,5 до 3,5 тонн обжатых кусков «на огонь», при расходе древесного угля всего 0,32-0,40 на единицу готового материала и выходе его от 89 до 93,5% заданного в передел чугуна. В самое последнее время в Швеции были произведены удачные опыты передела жидкого чугуна, взятого от доменных печей, и ускорения процесса кипения перемешиванием металла при помощи механических граблей; при этом угар снизился до 7%, а расход угля - до 0,25.

О химическом составе шведского и южно-уральского железа дают понятие следующие данные (в %):

Из всех родов железа, получаемых промышленными способами, шведское кричное наиболее приближается к химически чистому и вместо последнего применяется в лабораторной практике и исследовательских работах. От сыродутного железа оно отличается своей однородностью, а от самого мягкого мартеновского металла (литого железа) отсутствием марганца; ему свойственна высшая степень свариваемости, тягучести и ковкости. Шведское кричное железо обнаруживает незначительное временное сопротивление на разрыв - всего около 30 кг/мм 2 , при удлинении в 40% и уменьшении поперечного сечения в 75%. В настоящее время годовая производительность кричного железа в Швеции упала до 50000 т, так как после войны 1914-18 гг. область промышленных применений для этого железа сильно сократилась. Наибольшее количество его идет на изготовление (в Англии гл. обр. и в Германии) высших сортов инструментальной и специальной сталей; в самой Швеции из него делают специальную проволоку («цветочную»), подковные гвозди, хорошо кующиеся в холодном состоянии, цепи и полосовую заготовку для сварных труб. Для последних двух целей особенно важны свойства кричного железа: надежная свариваемость, а для труб, сверх того, высшая устойчивость против ржавления.

4) Развитие производства железа кричным процессом влекло за собой истребление лесов; после того как последние в различных странах были взяты под защиту закона, ограничившего их вырубку годовым приростом, Швеция, а затем и Россия - лесистые страны, изобилующие рудами высокого качества, - сделались главными поставщиками железа на международном рынке в течение всего 18 в. В 1784 г. англичанин Корт изобрел пудлингование - процесс передела чугуна на поду пламенной печи, в топке которой сжигался каменный уголь. После смерти Корта Роджерс и Голл ввели существенные улучшения в конструкцию пудлинговой печи, что способствовало быстрому распространению пудлингования во всех промышленных странах и совершенно изменило характер и размеры производства в них железа в течение первой половины 19 века. Этим процессом получили ту массу металла, которая понадобилась для постройки железных судов, железных дорог, локомотивов, паровых котлов и машин.

Топливом для пудлингования служит длиннопламенный каменный уголь, но там, где его нет, приходилось прибегать и к бурому углю, а у нас на Урале - к дровам. Сосновые дрова дают более длинное пламя, чем каменный уголь; оно хорошо греет, но содержание влаги в дровах не должно превосходить 12%. Впоследствии на Урале была применена к пудлингованию регенеративная печь Сименса. Наконец, в США и у нас (в Волжском и Камском бассейнах) пудлинговые печи работали на нефти, распыляемой в рабочее пространство печи непосредственно.

Для быстроты передела и уменьшения расхода топлива желательно иметь холодный пудлинговый чугун; при выплавке его на коксе, однако, в продукте получается много серы (0,2 и даже 0,3%), а при высоком содержании фосфора в руде - и фосфора. Для обыкновенных торговых сортов железа такой чугун с низким содержанием кремния (менее 1 %), под названием передельного, выплавлялся прежде в большом количестве. Древесноугольный чугун, который переделывался на Урале и в центральной России, не содержал серы и давал продукт, шедший и на изготовление кровельного железа. В настоящее время пудлингование служит для производства качественного металла по особым спецификациям, и потому в пудлинговые печи поступает не обыкновенный передельный чугун, а высококачественный, например, марганцовый или «гематит» (малофосфористый), или, наоборот, сильнофосфористый для производства гаечного железа. Ниже указано содержание (в %) главных элементов в некоторых сортах чугуна, применяемых для пудлингования:

Пудлинговая печь по окончании предыдущей операции обыкновенно имеет на поду нормальное количество шлака для работы со следующей садкой. При переработке сильно кремнистого чугуна шлака остается в печи много, и его приходится спускать; наоборот, белый чугун оставляет под печи «сухим», и работу приходится начинать заброской на под нужного количества шлака, который берут из-под молота («спелый», наиболее богатый магнитной окисью). На шлак забрасывается садка чугуна, подогретая в чугуннике (250-300 кг в ординарных и 500-600 кг в двойных печах); затем в топку забрасывают свежую порцию горючего, прочищают колосники, и в печи устанавливается полная тяга. В течение 25-35 мин. чугун плавится, претерпевая б. или м. значительное изменение в своем составе. Твердый чугун окисляется кислородом пламени, причем железо, марганец и кремний дают двойной силикат, стекающий на под печи; плавящийся чугун обнажает все новые и новые слои твердого чугуна, который тоже окисляется и плавится. В конце периода плавления на поду получаются два жидких слоя - чугуна и шлака, на поверхности соприкосновения которых происходит, хотя и в слабой степени, процесс окисления углерода магнитной окисью железа, о чем свидетельствуют выделяющиеся из ванны пузыри окиси углерода. Смотря по содержанию кремния и марганца в чугуне, в расплавленном металле их остается неодинаковое количество: в малокремнистом древесноугольном чугуне или белом - коксовой плавки - кремний в большинстве случаев выгорает при плавлении полностью; иногда же остается некоторое количество его в металле (0,3-0,25%), равно как и марганца. Фосфор тоже окисляется в это время, переходя в фосфорножелезную соль. От уменьшения веса металла при выгорании названных примесей %-ное содержание углерода может даже возрасти, хотя некоторое количество его несомненно сжигается кислородом пламени и шлаков, покрывающих первые порции расплавленного металла.

Для ускорения выгорания оставшихся количеств кремния, марганца и углерода прибегают к пудлингованию, т. е. перемешиванию чугуна со шлаком при помощи клюшки с загнутым под прямым углом концом. Если металл жидок (серый чугун, сильно углеродистый), то перемешивание не достигает цели, и ванну предварительно делают густой забрасыванием в нее холодного спелого шлака или же уменьшением тяги устанавливают в печи неполное горение, сопровождающееся получением сильно коптящего пламени (томление). Через несколько минут, в течение которых производят непрерывно перемешивание, на поверхности ванны появляются обильные пузыри горящей окиси углерода - продукта окисления углерода чугуна кислородом магнитной окиси, растворенной в основном железистом шлаке. По мере хода процесса окисление С усиливается и переходит в бурное «кипение» всей массы металла, которое сопровождается вспучиванием ее и таким значительным увеличением объема, что часть шлака переливается через порог рабочих отверстий. По мере выгорания С повышается температура плавления металла, и для того, чтобы кипение продолжалось, повышают непрерывно температуру в печи. Оконченное при низкой температуре кипение дает сырой товар, т. е. высокоуглеродистую губчатую массу железа, неспособную свариваться; в горячей печи «садится» спелый товар. Процесс окисления примесей железа в пудлинговой печи начинается за счет кислорода шлака, представляющего сплав однокремнеземика железа (Fe 2 SiО 4) с магнитной окисью и закисью железа переменного состава. В английских печах состав смеси окислов выражается формулой 5Fe 3 О 4 ·5 FeО; по окончании кипения отношение окислов в истощенном шлаке выражается формулой Fe 3 О 4 ·5FeО, т. е. в процессе окисления принимает участие 80% всей магнитной окиси шлака. Реакции окисления м. б. представлены следующими термохимическими уравнениями:

Как видно из этих уравнений, окисление Si, Р и Мn сопровождается выделением тепла и, следовательно, нагревает ванну, тогда как окисление С при восстановлении Fe 3 О 4 в FeO поглощает тепло и потому требует высокой температуры. Этим объясняется порядок удаления примесей железа и то, что выгорание углерода заканчивается скорее в горячей печи. Восстановления Fe 3 О 4 до металла не происходит, т. к. для этого требуется более высокая температура, чем та, при которой идет «кипение».

Севший «товар», для того чтобы стать хорошо сваривающимся железом, нуждается еще в пропаривании: товар оставляют на несколько минут в печи и от времени до времени переворачивают ломами, причем нижние его части кладут наверх; под совокупным действием кислорода пламени и шлаков, пропитывающих всю массу железа, углерод в это время продолжает выгорать. Как только получится некоторое количество хорошо сваривающегося металла, из него, избегая лишнего окисления, начинают накатывать крицы. Всего накатывают по мере поспевания товара от 5 до 10 криц (не более 50 кг каждая); крицы выдерживают (пропаривают) у порога в области высшей температуры и подают под молот для обжатия, чем достигается выделение шлака, и придания им формы куска (сечение от 10x10 до 15x15 см), удобной для прокатки в валках. На место выданных криц перемещаются передвижением вперед следующие за ними, до последней. Длительность процесса при производстве металла высшего качества (волокнистое железо) из спелого (высокоуглеродистого) древесноугольного чугуна была на Урале такова: 1) посадка чугуна - 5 мин., 2) плавление - 35 мин., 3) томление - 25 мин., 4) пудлингование (перемешивание) - 20 мин., 5) пропаривание товара - 20 мин., 6) накатка и пропаривание криц - 40 мин., 7) выдача криц (10-11 шт.) - 20 мин.; всего - 165 мин. При работе на белом чугуне, на обычное торговое железо, длительность процесса сокращалась (в 3ападной Европе) до 100 и даже 75 мин.

Что касается результатов работы, то в разных металлургических районах они менялись в зависимости от рода топлива, качества чугуна и сорта производимого железа. Уральские печи, работавшие на дровах, давали выход годного железа на 1 м 3 дров от 0,25 до 0,3 т; расход нефти у нас на единицу железа - 0,3З, каменного угля в европейских печах - от 0,75 до 1,1. Суточная производительность наших больших печей (садка чугуна 600 кг) при работе на сушеных дровах была 4-5 т; выход материала, пригодного для производства кровельного железа, составлял 95-93% количества поступившего в передел чугуна. В Европе суточная производительность обыкновенных печей (садка 250-300 кг) - около 3,5 т при угаре в 9%, а для высококачественного железа - 2,5 т при угаре в 11%.

По химическому составу и физическим свойствам пудлинговое железо является гораздо худшим продуктом, чем кричное, с одной стороны, и литое мартеновское - с другой. Изготовлявшиеся прежде в 3ападной Европе обыкновенные сорта железа содержали много серы и фосфора, т. к. вырабатывались из нечистых коксовых чугунов, а обе эти вредные примеси только частью переходят в шлак; количество шлака в пудлинговом железе - 3-6%, в качественном металле оно не превосходит 2%. Присутствие шлака сильно понижает результаты механических испытаний пудлингового железа. Ниже приведены некоторые данные в %, характеризующие пудлинговое железо - обыкновенное зап.-европейское и хорошее уральское:

Ценным свойством, ради которого и поддерживается теперь производство пудлингового железа, является его прекрасная свариваемость, имеющая иногда особое значение с точки зрения безопасности. Спецификациями ж.-д. обществ предписывается изготовление из пудлингового железа сцепных устройств, тяг для переводных стрелок и болтов. Благодаря лучшему сопротивлению разъедающему действию воды, пудлинговое железо идет также для производства водопроводных труб. Из него же изготовляют гайки (фосфористый крупнозернистый металл) и высококачественное волокнистое железо для заклепок и цепей.

Строение сварочного железа, обнаруживаемое под микроскопом даже при слабом увеличении, характерно присутствием на фотографическом изображении черных и светлых составляющих; первые принадлежат шлаку, а вторые - зернам или волокнам железа, полученным при вытяжке металла.

Железо торговое

Металлургические заводы изготовляют для нужд промышленности железо двух главных видов: 1) листовое и 2) сортовое.

Листовое железо прокатывается в настоящее время до 3 м ширины; при толщине 1-З мм оно называется у нас тонкокатальным; от 3 мм и выше (обычно до 40 мм) - котельным, резервуарным, корабельным, смотря по назначению, которому соответствуют состав и механические свойства материала. Наиболее мягким является котельное железо; оно содержит обыкновенно 0,10-0,12% С, 0,4-0,5% Mn, Р и S - каждого не более 0,05%; временное сопротивление его на разрыв не д. б. больше 41 кг/мм 2 (но и не меньше 34 кг/мм 2), удлинение при разрыве - около 28%. Резервуарное железо выделывается более твердым и прочным; оно содержит 0,12-0,15% С; 0,5-0,7% Мn и не более 0,06% как Р, так и S; сопротивление разрыву 41-49 кг/мм 2 , удлинение 25-28%. Длина листов котельного и резервуарного железа устанавливается заказом сообразно размерам изделия, склепываемого из листов (избегая лишних швов и обрезков), но обыкновенно она не превышает 8 м, так как ограничивается для тонких листов их быстрым охлаждением вовремя процесса прокатки, а для толстых - весом слитка.

Листовое железо менее 1 мм толщины называется черной жестью; оно служит для изготовления белой жести и как кровельный материал. Для последней цели в СССР прокатывают листы размерами 1422x711 мм, весом 4-5 кг, при толщине 0,5-0,625 мм. Кровельное железо выпускается заводами в пачках весом по 82 кг. За границей черная жесть классифицируется в торговле по номерам специального калибра - от 20-го до 30-го (нормальная толщина германской жести от 0,875 до 0,22 мм, а английской - от 1,0 до 0,31 мм). Жесть изготовляется из самого мягкого литого железа, содержащего 0,08- 0,10% С, 0,3-0,35% Мn, если оно изготовляется из чугуна древесноугольной плавки (у нас), и 0,4-0,5% Мn, если исходным материалом служат коксовый чугун; сопротивление разрыву - от 31 до 34 кг/мм 2 , удлинение - 28-30%. Разновидностью листового железа является волнистое (гофрированное) железо. Оно разделяется по характеру волн на железо с низкими и высокими волнами; в первом - отношение ширины волны к глубине колеблется от 3 до 4, во втором 1-2. Волнистое железо делают толщиной 0,75-2,0 мм и шириной листов 0,72-0,81 м (с низкими волнами) и 0,4-0,6 м (с высокими волнами). Волнистое железо употребляется для кровель, стен легких сооружений, жалюзи, а с высокими волнами, кроме того, идет для постройки бесстропильных перекрытий.

Сортовое железо делится по форме поперечного сечения на два класса: обыкновенное сортовое железо и фасонное.

К первому классу относится железо круглое (при диаметре менее 10 мм называемое проволокой), квадратное, плоское или полосовое. Последнее, в свою очередь, делится на: собственно полосовое - шириной от 10 до 200 мм и толщиной более 5 мм; обручное - той же ширины, но толщиной от 5 до 1 мм, указываемой № калибра (от 3-го до 19-го нормального германского и от 6-го до 20-го нового английского калибра); шинное - от 38 до 51 мм шириной и до 22 мм толщиной; универсальное - от 200 до 1000 мм шириной и не менее 6 мм толщиной (прокатывается в особых валках - универсальных). Как шинное, так и обручное железо выпускается заводами скатами, катаная проволока - мотками; остальные сорта - в виде прямых (правленных) полос, обычно не более 8 м длиной (нормально - от 4,5 до 6 м), но по специальному заказу для бетонных конструкций полосы нарезаются до 18 мм длиной, а иногда и более.

Главнейшие виды фасонного железа: угловое (равнобокое и неравнобокое), коробчатое (швеллерное), тавровое, двутавровое (балки), колонное (квадратное) и зетовое железо; существуют также и некоторые другие менее распространенные виды фасонного железа. По нашему нормальному метрическому сортименту размеры фасонного железа указываются № профиля (№ - число см. ширины полки или наибольшей высоты профиля). Угловое неравнобокое и тавровое железо имеют двойной №; напр., № 16/8 означает угловое с полками в 16 и 8 см или тавровое с полкой в 16 см и высотой тавра 8 см. Наиболее тяжелые профили катаемого у нас фасонного железа: № 15 - углового, № 30 - корытного, № 40 - двутаврового.

Состав обыкновенного сваривающегося сортового железа: 0,12% С, 0,4% Мn, менее 0,05% Р и S - каждого; сопротивление его разрыву 34-40 кг/мм 2 ; но круглое железо для заклепок изготовляется из более мягкого материала состава: менее 0,10% С, 0,25- 0,35% Мn, около 0,03% Р и S - каждого. Сопротивление разрыву 32-35 кг/мм 2 , а удлинение 28-32%. Фасонное не свариваемое, а склепываемое железо («строительная сталь») содержит: 0,15 - 0,20% С, 0,5% Мn, до 0,06% Р и S - каждого; его сопротивление разрыву 40-50 кг/мм 2 , удлинение 25-20%. Для производства гаек изготовляется железо (томасовское), содержащее около 0,1% С, но от 0,3 до 0,5% Р (чем крупнее гайки, тем больше Р). За границей для удовлетворения нужд специальных прокатных заводов в торговле обращается полупродукт - квадратная заготовка, обыкновенно 50 х 50 мм в поперечном сечении.

Железо в чистом виде – это пластичный металл серого цвета, легко подвергаемый обработке. И всё же, для человека элемент Fe более практичен в сочетании с углеродом и другими примесями, которые позволяют образовывать металлические сплавы – стали и чугуны. 95% – именно столько всей производимой на планете металлической продукции содержит железо в качестве основного элемента.

Железо: история

Первые железные изделия, изготовленные человеком, датированы учёными IV тыс. до н. э., причем исследования показали, что для их производства использовалось метеоритное железо, для которого характерно 5-30-процентное содержание никеля. Интересно, но пока человечество не освоило добычу Fe путём его переплавки, железо ценилось дороже золота. Объяснялось это тем, что более крепкая и надежная сталь куда больше подходила для изготовления орудий труда и оружия, нежели медь и бронза.

Первый чугун научились получать древние римляне: их печи могли повышать температуру руды до 1400 о С, в то время как чугуну было достаточно 1100-1200 о С. Впоследствии они же получили и чистую сталь, температура плавления которой, как известно, составляет 1535 градуса по Цельсию.

Химические свойства Fe

С чем взаимодействует железо? Железо взаимодействует с кислородом, что сопровождается образованием оксидов; с водой в присутствии кислорода; с серной и соляной кислотами:

  • 3Fe+2O 2 = Fe 3 O 4
  • 4Fe+3O 2 +6H 2 O = 4Fe(OH) 3
  • Fe+H 2 SO 4 = FeSO 4 +H 2
  • Fe+2HCl = FeCl 2 +H 2

Также железо реагирует на щелочи, только если они представляют собой расплавы сильных окислителей. Железо не реагирует с окислителями при обычной температуре, однако всегда начинает вступать в реакцию при её повышении.

Применение железа в строительстве

Применение железа строительной отраслью в наши дни нельзя переоценить, ведь металлоконструкции являются основой абсолютно любого современного строения. В этой сфере Fe используется в составе обычных сталей, литейного чугуна и сварочного железа. Данный элемент находится везде, начиная с ответственных конструкций и заканчивая анкерными болтами и гвоздями.


Возведение строительных конструкций из стали обходится гораздо дешевле, к тому же здесь можно говорить и о более высоких темпах строительства. Это заметно увеличивает использование железа в строительстве, в то время как сама отрасль осваивает применение новых, более эффективных и надежных сплавов на основе Fe.

Использование железа в промышленности

Использование железа и его сплавов – чугуна и стали – это основа современного машино-, станко-, авиа-, приборостроения и изготовления прочей техники. Благодаря цианидам и оксидам Fe функционирует лакокрасочная промышленность, сульфаты железа применяются при водоподготовке. Тяжелая промышленность и вовсе немыслима без использования сплавов на основе Fe+C. Словом, Железо – это незаменимый, но вместе с тем доступный и относительно недорогой металл, который в составе сплавов имеет практически неограниченную сферу применения.

Применение железа в медицине

Известно, что в каждом взрослом человеке содержится до 4 грамм железа. Этот элемент крайне важен для функционирования организма, в частности, для здоровья кровеносной системы (гемоглобин в эритроцитах). Существует множество лекарственных препаратов на основе железа, которые позволяют повышать содержание Fe во избежание развития железодефицитной анемии.

Цели урока:

  • Познакомить учащихся с элементом побочной группы Периодической системы – железом, его строением, свойствами.
  • Знать нахождение железа в природе, способы его получения, применение, физические свойства.
  • Уметь давать характеристику железа как элемента побочной подгруппы.
  • Уметь доказывать химические свойства железа и его соединений, записывать уравнения реакций в молекулярном, ионном, окислительно-восстановительном виде.
  • Развивать умения учащихся составлять уравнения реакций с участием железы, сформировать знания учащихся о качественных реакциях на ионы железы.
  • Воспитывать интерес к предмету.

Оборудование: железо (порошок, булавка, пластина), сера, колба с кислородом, соляная кислота, сульфат железы(II), хлорид железы(III),гидроксид натрия, красная и желтая кровяные соли.

ХОД УРОКА

I. Органиционный момент

II. Проверка домашнего задания

III. Изучение нового материала

1. Вступление учителя.

– Значение железа в жизни, его роль в истории цивилизации. Одним из самых распространенных металлов в земной коре является железо. Применять его начали гораздо позже других металлов (меди, золота, цинка, свинца, олова), что, скорее всего, объясняется малым сходством руды железа с металлом. Первобытным людям было очень трудно догадаться, что из руды можно получить металл, который успешно можно использовать при изготовлении различных предметов, сказалось отсутствие инструментов и необходимых приспособлений для организации такого процесса. До того времени, когда человек научился получать из руды железо и изготавливать из него сталь и чугун, прошло довольно длительное время.
На данный момент железные руды являются необходимым сырьем для черной металлургии, теми полезными ископаемыми, обходиться без которых не сможет ни одна развитая промышленная страна. За год мировая добыча железных руд составляет приблизительно 350 000 000 тонн. Используются они для выплавки железа (содержание углерода 0,2-0,4 %), чугуна (2,5-4% углерода), стали (2,5-1,5 % углерода) Сталь имеет наиболее широкое применение в промышленности, чем железо и чугун, поэтому и больше спрос на ее выплавку.
Для выплавки чугуна из железных руд используются домны, которые работают на каменном угле или коксе, переплавка стали и железа из чугуна происходит в отражательных мартеновских печах, бессемеровских конверторах или способом Томаса.
Черные металлы и их сплавы имеют огромное значение в жизни и развитии человеческого общества. Всевозможные предметы быта и широкого потребления изготавливаются из железа. Для строительства кораблей, самолетов, железнодорожного транспорта, автомобилей, мостов, железных дорог, различных зданий, оборудования и прочего, используются сотни миллионов тонн стали и чугуна. Не существует такой отрасли сельского хозяйства и промышленности, в которой бы не применялись железо и его различные сплавы.
Немногие часто встречающиеся в природе минералы, имеющие в своем составе железо, являются именно железной рудой. К таким минералам можно отнести: бурый железняк, гематит, магнетит, другие, образующие крупные месторождения и занимающие огромные площади.
Химическое отношение магнетита или магнитного железняка, имеющего железо – черный цвет и уникальное свойство – магнитность, представляет собой соединение, состоящее из окиси и закиси железа. В природной среде его можно встретить как в виде зернистых или сплошных масс, так и в виде хорошо сформированных кристаллов. Железная руда наиболее богата содержанием металлического железа магнетита (до 72%).
Самые крупные в нашей стране месторождения магнетитовых руд находятся на Урале, в горах Высокая, Благодать, Магнитная, в некоторых районах Сибири – бассейне реки Ангара, Горной Шории, на территории Кольского полуострова.

2. Работа с классом. Характеристика железа как химического элемента

а) Положение в периодической системе:

Задание 1. Определить положение железа в Периодической системе?

Ответ: Железо расположено в 4-м большом периоде, четном ряду, 8-й группе, побочной группе.

б) строение атома:

Задание 2. Зарисовать состав и строение атома железа, электронные формулу и ячейки.

Ответ: Fe +3 2) 8) 14) 2)металл

р = 26
е = 26
n = (56 – 26) = 30

1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

Вопрос. На каких слоях у железа расположены валентные электроны? Почему?

Ответ. Валентные электроны расположены на последнем и предпоследнем слоях, так как это элемент побочной подгруппы.

Железо относят к d-элементам, оно входит в состав триады элементов – металлов (Fe-Co-Ni);

в) окислительно-восстановительные свойства железа:

Вопрос. Чем является железо-окислителем или восстановителем? Какие степени окисления и валентность проявляет?

Ответ:

Fe 0 – 2e = Fe +3 }восстановитель
Fe 0 – 3e = Fe +3
с.о.+ 2,+ 3; валентность = II и III, валентность 7 – не проявляет;

г) соединения железа:

FeO – основный оксид
Fe(OH) 2 – нерастворимое основание
Fe 2 O 3 – оксид признаками амфотерности
Fe(OH) 3 – основание с признаки амфотерности
Летучие водородные соединения – нет.

д) нахождение в природе.

Железо является вторым по распространенности металлом в природе(после алюминия).В свободном состоянии железо встречается только в метеоритах.Наиболее важные природные соединения:

FeO*3HO – бурый железняк,
FeO – красный железняк,
FeO (FeO*FeO) – магнитный железняк,
FeS – железный колчедан (пирит)

Соединения железа входят в состав живых организмов.

3. Характеристика простого вещества железа

а) строение молекулы, тип связи, тип кристаллической решетки;(самостоятельно)

б) физические свойства железа

Железо – серебристо-серый металл, обладает большой ковкостью, пластичностью и сильными магнитными свойствами. Плотность железа – 7,87г/см 3 , температура плавления 1539 t о С.

в) химические свойства железа:

Атомы железа в реакциях отдают электроны и проявляют степени окисления + 2,+ 3 и иногда + 6.
В реакциях железо является восстановителем. Однако при обычной температуре оно не взаимодействует даже с самыми октивными окислителями(галогенами,кислородом,серой) но при нагревании становится активными и реагирует с ними:

2Fe +3Cl 2 = 2FeCl 3 Хлорид железа(III)
3Fe + 2O 2 = Fe 2 O 3 (FeO*Fe O) Оксид железа(III)
Fe +S = FeS Сульфид железа(II)

При очень высокой температуре железо реагирует с углеродом, кремнием и фосфором.

3Fe + C = Fe 3 C Карбид железа(цементит)
3Fe + Si = Fe 3 Si Силицид железа
3Fe + 2P = Fe 3 P 2 Фосфид железа

Железо реагирует со сложными веществами.
Во влажном воздухе железо быстро скисляется(корродирует):

4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3
Fe(OH) 3 ––> FeOOH + H 2 O
Ржавчина

Железо находится в середине электрохимического ряда напряжений металлов,поэтому является металлом средней активности. Восстановительная способность у железаменьше, чем у щелочных, щелочноземельных металлов и у алюминия. Только при высокой температуре раскаленное железо реагирует с водой:

3Fe + 4H 2 O = Fe 3 O 4 + 4H 2

Железо реагирует с разбавленными серной и соляной кислотами,вытесняя из них водород:

Fe + 2HCl = FeCl 2 + H 2
Fe + H 2 SO 4 = FeSO 4 + H 2
Fe 0 + 2H + = Fe 2+ + H 2 0

При обычной температуре железо не взаимодействует с концентрированной серной кислотой, так как пассивируется ею.При нагревании концентрированная серная кислота окисляет железо до сульфата железа(III):

2Fe + 6H 2 SO 4 = Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O

Разбавленная азотная кислота окисляет железо до нитрата железа(III):

Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2H 2 O

Концентрированная азотная кислота пассивирует железо.

Из растворов солей железо вытесняет металлы, которые расположены правее его в электрохимическом ряду напряжений:

Fe + CuSO 4 = FeSO 4 + Cu,

г) применение железа (самостоятельно)

д) получение (вместе с учащимися)

В промышленности железо получают восстановлением его из железных руд углеродом (коксом) и оксидом углерода (II) в доменных печах.
Химизм доменного процесса следующий:

C + O = CO
CO + C = 2CO
3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2
Fe 3 O 4 + CO = 3FeO + CO 2
FeO + CO = Fe + CO 2

4. Соединения железа

Химические свойства данных соединений.

Дополнение. Соединения железа(II) неустойчивы, они могут они могут окисляться и переходить в соединения железа(III)

Fe +2 Cl 2 + Cl 2 = Fe +3 Cl 3 составить дома окислительно-восстановительные
Fe +2 (OH) + H 2 O + O 2 = Fe +3 (OH) 3 схемы, уравнять.

Химические свойства данных соединений

Также качественной реакцией на Fe +2 служит реакция солей железа(II) с веществом,называемым красный кровяной солью K 3 – это комплексное соединение.

3FeCl + 2K 3 = Fe 3 }

Понравилась статья? Поделитесь с друзьями!