Термический коэффициент скорости хим реакции. Зависимость скорости реакции от температуры

Задача № 1. Взаимодействие со свободным кислородом приводит к образованию высокотоксичного диоксида азота / /, хотя эта реакция в физиологических условиях протекает медленно и при низких концентрациях не играет существенной роли в токсическом повреждении клеток, но, однако патогенные эффекты резко возрастают при его гиперпродукции. Определите, во сколько раз возрастает скорость взаимодействия оксида азота (II) c кислородом при увеличении давления в смеси исходных газов в два раза, если скорость реакции описывается уравнением ?

Решение .

1. Увеличение давления вдвое равноценно двойному увеличению концентрации (с ) и . Поэтому скорости взаимодействия, соответствующие и ,примут в соответствии с законом действия масс выражения: и

Ответ . Скорость реакции увеличится в 8 раз.

Задача № 2. Считается, что концентрация хлора (зеленоватый газ с резким запахом) в воздухе выше 25 ppm опасна для жизни и здоровья, но, имеются данные, что если пациент восстановился после острого тяжелого отравления этим газом, то остаточных явлений не наблюдается. Определите, как изменится скорость реакции: , протекающей в газовой фазе, если увеличить в 3-и раза: концентрацию , концентрацию , 3) давление / /?

Решение .

1. Если обозначить концентрации и соответственно через и , то выражение для скорости реакции примет вид: .

2. После увеличения концентраций в 3-и раза они будут равны для и для . Поэтому выражение для скорости реакции примет вид: 1) 2)

3. Увеличение давления во столько же раз увеличивает концентрацию газообразных реагирующих веществ, поэтому

4. Увеличение скорости реакции по отношению к первоначальной определяется отношением соответственно: 1) , 2) , 3) .

Ответ . Скорость реакции увеличится в: 1) , 2) , 3) раза.

Задача № 3 . Как изменяется скорость взаимодействия исходных веществ при изменении температуры с до , если температурный коэффициент реакции равен 2,5?

Решение .

1. Температурный коэффициент показывает, как меняется скорость реакции при изменении температуры на каждые (правило Вант-Гоффа): .

2. Если же изменение температуры: , то с учетом того, что , получаем: . Отсюда, .

3. По таблице антилогарифмов находим: .

Ответ . При изменении температуры (т.е. при повышении) скорость увеличится в 67,7 раз.

Задача № 4 . Вычислите температурный коэффициент скорости реакции, зная, что с повышением температуры на скорость возрастает в 128 раз.

Решение .

1. Зависимость скорости химической реакции от температуры выражается эмпирическим правилом Вант-Гоффа:

.Решая уравнение относительно , находим: , . Следовательно, =2

Ответ . =2.

Задача № 5 . Для одной из реакций были определены две константы скорости: при 0,00670 и при 0,06857. Определите константу скорости этой же реакции при .

Решение .

1. По двум значениям констант скорости реакции, используя уравнение Аррениуса, определяем величину энергии активации реакции: . Для данного случая: Отсюда: Дж/моль.

2. Рассчитаем константу скорости реакции при , используя в расчетах константу скорости при и уравнение Аррениуса: . Для данного случая: и с учетом того, что: , получаем: . Следовательно,

Ответ .

Вычисление константы химического равновесия и определение направление смещения равновесия по принципу Ле-Шателье .

Задача №6. Двуокись углерода / / в отличие от моноксида углерода / / не нарушает физиологических функций и анатомической целостности живого организма и удушающий эффект их обусловлен лишь присутствием в высокой концентрации и снижением процентного содержания кислорода во вдыхаемом воздухе. Чему равна константа равновесия реакции / /: при температуре , выраженная через: а) парциальные давления реагирующих веществ ; б) их молярные концентрации , зная, что состав равновесной смеси выражается объемными долями: , и , а общее давление в системе составляет Па?

Решение .

1. Парциальное давление газа равно общему давлению, умноженному на объемную долю газа в смеси, поэтому:

2. Подставляя эти значения в выражение константы равновесия, получим:

3. Взаимосвязь между и устанавливается на основе уравнения Менделеева ­ Клапейрона для идеальных газов и выражается равенством: , где – разность между числом молей газообразных продуктов реакции и газообразных исходных веществ. Для данной реакции: . Тогда: .

Ответ . Па. .

Задача № 7. В каком направлении сместится равновесие в следующих реакциях:

3. ;

а) при повышении температуры, б) при понижении давления, в) при увеличении концентрации водорода?

Решение .

1. Химическое равновесие в системе устанавливается при постоянстве внешних параметров ( и др.). Если эти параметры меняются, то система выходит из состояния равновесия и начинает преобладать прямая (вправо) или обратная реакции (влево). Влияние различных факторов на смещение равновесия отражено в принципе Ле Шателье.

2. Рассмотрим влияние на вышеуказанные реакции всех 3-х факторов, влияющих на химическое равновесие.

а) При повышении температуры равновесие смещается в сторону эндотермической реакции, т.е. реакции, идущей с поглощением тепла . 1-я и 3-я реакции – экзотермические / /, следовательно, при повышении температуры равновесие сместится в сторону обратной реакции, а во 2-ой реакции / / – в сторону прямой реакции.

б) При понижении давления равновесие смещается в сторону возрастания числа молей газов, т.е. в сторону большего давления . В 1-ой и 3-ей реакциях в левой и правой частях уравнения будет одинаковое число молей газов (2-2 и 1-1 соответственно). Поэтому изменение давления не вызовет смещения равновесия в системе. Во 2-ой реакции в левой части 4 моля газов, в правой – 2 моля, поэтому при понижении давления равновесие сместится в сторону обратной реакции.

в) При увеличении концентрации компонентов реакции равновесие смещается в сторону их расхода. В 1-ой реакции водород находится в продуктах, и увеличение его концентрации усилит обратную реакцию, в ходе которой он расходуется. Во 2-ой и 3-ей реакциях водород входит в число исходных веществ, поэтому увеличение его концентрации смещает равновесие в сторону реакции, идущей с расходом водорода.

Ответ .

а) При повышении температуры в реакциях 1 и 3 равновесие будет смещено влево, а в реакции 2 – вправо.

б) На реакции 1 и 3 понижение давления не повлияет, а в реакции 2 – равновесие будет смещено влево.

в) Повышение температуры в реакциях 2 и 3 повлечет за собой смещение равновесия вправо, а в реакции 1 – влево.

1.2. Ситуационные задачи №№ с 7 по 21 для закрепления материала (выполнить в протокольной тетради).

Задача № 8. Как изменится скорость окисления глюкозы в организме при снижении температуры с до , если температурный коэффициент скорости реакции равен 4 ?

Задача № 9 .Используя приближенное правило Вант-Гоффа, вычислить, на сколько нужно повысить температуру, чтобы скорость реакции возросла в 80 раз? Температурный коэффициент скорости принять равным 3.

Задача № 10. Для практической остановки реакции применяют быстрое охлаждение реакционной смеси («замораживание реакции»). Определите, во сколько раз изменится скорость реакции при охлаждении реакционной смеси с 40 до , если температурный коэффициент реакции равен 2,7.

Задача № 11. Изотоп , применяющийся для лечения некоторых опухолей, имеет период полураспада 8,1 суток. Через какое время содержание радиоактивного йода в организме пациента уменьшится в 5 раз?

Задача № 12. Гидролиз некоторого синтетического гормона (фармпрепарата) является реакцией первого порядка с константой скорости 0,25 (). Как изменится концентрация этого гормона через 2 месяца?

Задача №13. Период полураспада радиоактивного равен 5600 лет. В живом организме за счет обмена веществ поддерживается постоянное количество . В останках мамонта содержание составило от исходного. Определите, когда жил мамонт?

Задача № 14. Период полураспада инсектицида (ядохимиката, применяемого для борьбы с насекомыми) составляет 6 месяцев. Некоторое количество его попало в водоем, где установилась концентрация моль/л. За какое время концентрация инсектицида понизится до уровня моль/л?

Задача №15. Жиры и углеводы окисляются с заметной скоростью при температуре 450 - 500°, а в живых организмах - при температуре 36 - 40°. В чем причина резкого уменьшения температуры, необходимой для окисления?

Задача № 16. Пероксид водорода разлагается в водных растворах на кислород и воду. Реакцию ускоряют как неорганический катализатор (ион ), так и биоорганический (фермент каталаза). Энергия активации реакции в отсутствие катализатора 75,4 кДж/моль. Ион снижает ее до 42 кДж/моль, а фермент каталаза - до 2 кДж/моль. Рассчитайте соотношение скоростей реакции в отсутствие катализатора в случаях присутствия и каталазы. Какой вывод можно сделать об активности фермента? Реакция протекает при температуре 27 °С.

Задача № 17 Константа скорости распада пенициллина при рации Дж/моль.

1.3. Контрольные вопросы

1. Объясните, что означают термины: скорость реакции, константа скорости?

2. Как выражается средняя и истинная скорость химических реакций?

3. Почему о скорости химических реакций имеет смысл говорить только для данного момента времени?

4. Сформулируйте определение обратимой и необратимой реакции.

5. Дайте определение закона действующих масс. В равенствах, выражающих этот закон, отражена ли зависимость скорости реакции от природы реагирующих веществ?

6. Как зависит скорость реакции от температуры? Что называется энергией активации? Что такое активные молекулы?

7. От каких факторов зависит скорость гомогенной и гетерогенной реакции? Приведите примеры.

8. Что такое порядок и молекулярность химических реакций? В каких случаях они не совпадают?

9. Какие вещества называются катализаторами? Каков механизм ускоряющего действия катализатора?

10. В чем заключается понятие «отравление катализатора»? Какие вещества называют ингибиторами?

11. Что называется химическим равновесием? Почему оно называется динамическим? Какие концентрации реагирующих веществ называют равновесными?

12. Что называют константой химического равновесия? Зависит ли она от природы реагирующих веществ, их концентрации, температуры, давления? Каковы особенности математической записи для константы равновесия в гетерогенных системах?

13. Что такое фармакокинетика лекарств?

14. Процессы, происходящие с лекарственным препаратом в организме, количественно характеризуются рядом фармакокинетических праметров. Приведите основные из них.

Возрастание скорости реакции с ростом температуры принято характеризовать температурным коэффициентом скорости реакции, числом, показывающим, во сколько раз возрастает скорость данной реакции при повышении температуры системы на 10°С. Температурный коэффициент различных реакций различен. При обычных температурах его значение для большинства реакций находится в пределах от 2... 4.

Температурный коэффициент определяют в соответствии с так называемым «правилом Вант-Гоффа», которое математически выражается уравнением

v 2 /v 1 = g (T 2 – T 1)/10 ,

где v 1 и v 2 скорости реакции при температурах Т 1 и Т 2 ; g - температурный коэффициент реакции.

Так, например, если g = 2, то при Т 2 – Т 1 = 50°С v 2 /v 1 = 2 5 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т 1 и Т 2 , а только от их разности.

Энергия активации, разность между значениями средней энергии частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергии всех частиц, находящихся в реагирующей системе. Для различных химических реакций Э. а. изменяется в широких пределах - от нескольких до ~ 10 дж./ моль. Для одной и той же химической реакции значение Э. а. зависит от вида функций распределения молекул по энергиям их поступательного движения и внутренним степеням свободы (электронным, колебательным, вращательным). Как статистическую величину Э. а. следует отличать от пороговой энергии, или энергетического барьера, - минимальной энергии, которой должна обладать одна пара сталкивающихся частиц для протекания данной элементарной реакции.

Аррениуса уравнение , температурная зависимость константы скорости к элементарной хим. реакции:

где A-предэкспоненциальныи множитель (размерность совпадает с размерностью к), Е а -энергия активации, обычно принимающая положит. значения, Т-абс. температура, k-постоянная Больцмана. Принято приводить Е а в расчете не на одну молекулу. а на число частиц N A = 6,02*10 23 (постоянная Авогадро) и выражать в кДж/моль; в этих случаях в уравнении Аррениуса величину k заменяют газовой постоянной R. График зависимости 1nк от 1/kT (аррениусов график) – прямая линия, отрицательный наклон которой определяется энергией активации Е а и характеризует положит. температурную зависимость к.

Катализа́тор - химическое вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции . Количество катализатора, в отличие от других реагентов, после реакции не изменяется. Важно понимать, что катализатор участвует в реакции. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно (до миллиона раз) [источник? ] повторяется.

Катализаторы подразделяются на гомогенные и гетерогенные . Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный - образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества . Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al 2 O 3 , TiO 2 , ThO 2 , алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO .

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных , существуют катализаторы окисления-восстановления ; для них характерно присутствие переходного металла или его соединения (Со +3 , V 2 O 5 +MoO 3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Диспе́рсная систе́ма - это образования из двух или более числа фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза ) мелко распределено во втором (дисперсионная среда ). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.).

Обычно дисперсные системы - это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза.

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы. Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду, например для системы «газ в жидкости» принято обозначение Г/Ж.

Коллоидные растворы. Коллоидное состояние характерно для многих веществ, если их частицы имеют размер от 1 до 500 нм. Легко показать, что суммарная поверхность этих частиц огромна. Если предположить, что частицы имеют форму шара с диаметром 10 нм, то при общем объеме этих частиц 1 см 3 они будут иметь

площадь поверхности порядка 10 м2. Как указывалось ранее поверхностный слой характеризуется поверхностной энергией и способностью адсорбировать те или иные частицы, в том числе ионы

из раствора. Характерной особенностью коллоидных частиц является наличие на их поверхности заряда, обусловленного избирательной адсорбцией ионов. Коллоидная частица имеет сложное строение. Она включает в себя ядро, адсорбированные ионы, противоины и растворитель. Существуют лиофильные (гид.

роф ильные) коллоиды, в которых растворитель взаимодейстиует с ядрами частиц, илнофобные (гидрофобные) коллоиды, в которых растворитель не взаимодействует с ядрами

частиц. Растворитель входит в состав гидрофобных частиц лишь как сольватная оболочка адсорбированных ионов или при наличии стабилизаторов (ПАВ), имеющих лиофобную и лиофильные части.

Приведем несколько примеров коллоидных частиц:

Как. видно, ядро состоит из электронейтрального агрегата час­тиц с адсорбированными ионами элементов, входящих в состав ядра (в данных примерах ионами Аg + , НS-, Fе 3+). Коллоидная час-шца кроме ядра имеет противоионы и молекулы растворителя. Ад­сорбированные ионы и противоионы с растворителем образуют ад­сорбированный слой. Суммарно заряд частицы равен разности за­рядов адсороированных ионов и противоионов. Вокруг частиц на­ходится д и ф ф у з н ы й с л о и и о н о в, заряд которых равен иряду коллоидной частицы. Коллоидная частица и диффузный слои образуют электронейтральную мицеллу

Мицеллы (уменьшительное от лат. mica - частица, крупинка) - частицы в коллоидных системах, состоят из нерастворимого в данной среде ядра очень малого размера, окруженного стабилизирующей оболочкой адсорбированных ионов и молекул растворителя. Например, мицелла сульфида мышьяка имеет строение:

{(As 2 S 3) m nHS − (n-x)H + } x- хН +

Средний размер мицелл от 10 −5 до 10 −7 см.

Коагуляция - разделение коллоидного раствора на две фазы – растворитель и студнеобразную массу, или загустевание раствора в результате укрупнения частиц растворенного вещества

Пептизация - процесс перехода коллоидного осадка или геля в коллоидный раствор под действием жидкости или добавленных к ней веществ, хорошо адсорбирующихся осадком или гелем, называемых в этом случае пептизаторами (например, пептизация жиров под действием желчи).
Пептизация - разъединение агрегатов частиц гелей (студней) или рыхлых осадков под влиянием определенных веществ - пептизаторов после коагуляции коллоидных растворов. В результате пептизации осадок (или гель) переходит во взвешенное состояние.

РАСТВОРЫ, однофазные системы, состоящие из двух или более компонентов. По своему агрегатному состоянию растворы могут быть твердыми, жидкими или газообразными.

Растворимость , способность вещества образовывать с другим веществом (или веществами) гомогенные смеси с дисперсным распределением компонентов (см. Растворы). Обычно растворителем считают вещество, которое в чистом виде существует в том же агрегатном состоянии, что и образовавшийся раствор. Если до растворения оба вещества находились в одном и том же агрегатном состоянии, растворителем считается вещество, присутствующее в смеси в существенно большем кол-ве.

Растворимость определяется физическим и химическим сродством молекул растворителя и растворяемого вещества, соотношением энергий взаимодействием однородных и разнородных компонентов раствора. Как правило, хорошо растворимы друг в друге подобные по физ. и хим. свойствам вещества (эмпирич. правило "подобное растворяется в подобном"). В частности, вещества, состоящие из полярных молекул, и вещества с ионным типом связи хорошо раств. в полярных растворителях (воде, этаноле, жидком аммиаке), а неполярные вещества хорошо раств. в неполярных растворителях (бензоле, сероуглероде).

Растворимость данного вещества зависит от температуры и давления соответствует общему принципу смещения равновесий (см. Ле Шателье-Брауна принцип). Концентрация насыщенного раствора при данных условиях численно определяет Р. вещества в данном растворителе и также наз. растворимостью. Пересыщенные растворы содержат большее кол-во растворенного вещества, чем это соответствует его растворимости, существование пересыщенных растворов обусловлено кинетич. затруднениями кристаллизации (см. Зарождение новой фазы). Для характеристики растворимости малорастворимых веществ используют произведение активностей ПА (для растворов, близких по своим свойствам к идеальному - произведение растворимости ПР).

Температура и скорость реакции

При фиксированной температуре реакция возможна, если взаимодействующие молекулы обладают определнным запасом энергии. Аррениус эту избыточную энергию назвал энергией активации , а сами молекулы активированными .

По Аррениусу константа скорости k и энергия активации E a связаны соотношением, получившим название уравнения Аррениуса:

Здесь A – предэкспоненциальный множитель, R – универсальная газовая постоянная, T – абсолютная температура.

Таким образом, при постоянной температуре скорость реакции определяет E a . Чем больше E a , тем меньше число активных молекул и тем медленнее протекает реакция. При уменьшении E a скорость возрастает, а при E a = 0 реакция протекает мгновенно.

Величина E a характеризует природу реагирующих веществ и определяется экспериментально из зависимости k = f (T ). Записав уравнение (5.3) в логарифмическом виде и решая его для констант при двух температурах, находим E a :

γ – температурный коэффициент скорости химической реакции. Правило Вант-Гоффа имеет ограниченное применение, поскольку величина γ зависит от температуры, а вне области E a = 50–100 кДж ∙ моль –1 это правило вообще не выполняется.

На рис. 5.4 видно, что затрачиваемая на перевод начальных продуктов в активное состояние (А* – активированный комплекс) энергия затем полностью или частично вновь выделяется при переходе к конечным продуктам. Разность энергий начальных и конечных продуктов определяет ΔH реакции, которая от энергии активации не зависит.

Таким образом, по пути из исходного состояния в конечное система должна преодолеть энергетический барьер. Только активные молекулы, обладающие в момент столкновения необходимым избытком энергии, равным E a , могут преодолеть этот барьер и вступить в химическое взаимодействие. С ростом температуры увеличивается доля активных молекул в реакционнной среде.

Предэкспоненциальный множитель A характеризует общее число соударений. Для реакций с простыми молекулами A близок к теоретической величине столкновений Z , т. е. A = Z , рассчитываемой из кинетической теории газов. Для сложных молекул A Z , поэтому необходимо вводить стерический фактор P :

Здесь Z – число всех соударений, P – доля соударений, благоприятных в пространственном отношении (принимает значения от 0 до ), – доля активных, т. е. благоприятных в энергетическом отношении соударений.

Размерность константы скорости получается из соотношения

Анализируя выражение (5.3), приходим к выводу, что существуют две принципиальные возможности ускорения реакции:
а) увеличение температуры,
б) снижение энергии активации.

Задачи и тесты по теме "Химическая кинетика. Температура и скорость реакции"

  • Скорость протекания химической реакции. Катализаторы - Классификация химических реакций и закономерности их протекания 8–9 класс

    Уроков: 5 Заданий: 8 Тестов: 1


Правило Вант-Гоффа:

при повышении температуры на 10 градусов скорость гомогенной хим.реакции увеличивается в 2-4 раза.

где V2 - скорость реакции при температуре Т2, V1- скорость реакции при температуре Т1, - температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов).

Из уравнения Вант-Гоффа температурный коэффициент вычисляется по формуле:

Теория активных соударений обобщает закономерности зависимости скорости хим.р-и от температуры:

1.Реагировать могут не все молекулы, а только находящиеся в особом активном состоянии

2.Активация молекулы происходит в результате биомолекулярного столкновения.

3.При столкновении частиц с примерно одинаковым запасом энергии происходит её перераспределение, в результате чего энергия одной из молекул достигает значения, соответствующего энергии активации.

4.Влияние температуры на скорость реакции: смещение равновесия между обычными и активными молекулами в сторону увеличения концентрации первых.

Энергетический профиль реакции (график зависимости потенциальной энергии от координаты реакции)

Энергия активации Еа – минимальная дополнительная энергия, которую необходимо сообщить молекуле сверх среднего её значения для того, чтобы стало возможным хим. взаимодействие.

Уравнение Аррениуса устанавливает зависимость константы скорости химической реакции k от температуры Т.

Здесь А характеризует частоту столкновений реагирующих молекул, R - универсальная газовая постоянная.

7. Катализ. Гомогенный и гетерогенный катализ. Осбенности каталитич.активности ферментов. Катализ- изменение скорости химических реакций в присутствии веществ, которые после завершения реакции остаются в неизменном виде и количестве. Увеличение скорости реакции называют положительным катализом , уменьшение – отрицательным катализом (или ингибированием) . Катализаторами называют вещества, которые вызывают положительный катализ; вещества, замедляющие реакции – ингибиторами . Различают гомогенный и гетерогенный катализ. Ускорение реакции диспропорционирования пероксида водорода в водном растворе в присутствии дихромат-ионов является примером гомогенного катализа(катализатор образует одну фазу с реакционной смесью), а в присутствии оксида марганца(IV) – примером гетерогенного катализа(водный раствор пероксида водорода-жидкая фаза, оксид марганца-твердая). Катализаторы биохимических реакций имеют белковую природу и называются ферментами . Ферменты отличаются от обычных катализаторов рядом особенностей: 1)они обладают значительно более высокой каталитической эффективностью; 2)высокая специфичность, т.е. избирательность действия; 3)многие ферменты проявляют каталитическую активность только по отношению к одному субстрату; 4)ферменты проявляют максимальную эффективность только в мягких условиях, характеризующихся небольшим интервалом температур и значений рН.Активность фермента=Скорость реакции нулевого порядка. 8.Химическое равновесие. Обратимые и необратимые по направлению реакции. Химическое равновесие : динамическое состояние, при котором скорость прямой и обратной реакций равны. Константа равновесия : при постоянных внешних условиях в равновесии отношение произведение концентраций продуктов к произведению концентраций реагентов с учетом стехиометрии есть величина постоянная, не зависящая от химического состава системы. К с связана со стандартной Е Гиббса соотношением:Принцип Ле-Шателье: воздействие какого-либо фактора (t, c, p) на равновесную систему стимулирует смещение равновесия в таком направлении, которое способствует восстановлению первоначальных характеристик системы.Термодинамические условия равновесия : G 2 -G 1 =0S 2 -S 1 =0Обратимая р-ция: при данных условиях самопроизвольно протекающая как в прямом, так и в обратном направлении.Условия протекания до конца: - Труднорастворимый осадок - газ - малодиссоциирующее в-во (вода) - устойчивое комплексное соединениеНеобртаимая р-ия : при данных условия протекает в одном направление. Положение химического равновесия зависит от следующих парамктров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была высказана в общем виде в 1884 году французским ученым Ле-Шателье. Современная формулировка принципа Ле-Шателье такова:

9. Роль воды и растворов в жизнедеятельности. Термодинамика растворения. Раствор -это гомогенная система переменного состава из двух и более веществ, находящаяся в состоянии равновесия. Классификация: 1) взвеси (грубо-дисперсная система): суспензии(тв.в-во в жидкости) и эмульсии(жидк. в жидк.) 2) коллоиды, золи (тонко-дисперсные системы). Значение растворов в жизнедеятельности : многие хим.процессы протекают лишь при условии, что участвующие в них вещества находятся в растворенном состоянии. Важнейшие биологические жидкости(кровь, лимфа, моча, слюна, пот) являются растворами солей, белков, углеводов, липидов в воде. Усвоение пищи связано с переходом питат.веществ в растворенное состояние. Биохимические реакции в живых организмах протекают в растворах. Биожидкости участвуют в транспорте питат.веществ(жиров, аминокислот, кислорода), лекарственных препаратов к органам и тканям, а также в выведении из организма метаболитов. В жидких средах организма поддерживается постоянство кислотности, концентрации солей и органических веществ (концентрационный гомеостаз). Самым распространенным растворителем на нашей планете является вода. Особенности воды : по своей теплоемкости превосходит все вещества; аномальное поведение при охлаждении – вода уплотняется, начинает тонуть, потом поднимается(все др.вещества тонут при уплотнении); может возгоняться(возгонка воды) – сублимация(при определен.условиях лед может переходить в пар без предварительного превращения в жидкую воду, т.е. без плавления); вода растворяет все вещества(вопрос только сколько?); высокая диэлектрическая постоянная воды(величина, показывающая во сколько раз сила взаимодействия между двумя зарядами в данном веществе меньше, чем в вакууме); высокая критическая температура; вода является амфолитом(не кислота, не осн-е); участвует в создании полимерных структур организма(белок, липиды…); основа мембранного транспорта. Термодинамика растворения: согласно 2-му началу термодинамики при р, Т=const вещества самопроизвольно могут растворяться в каком-либо растворителе, если в результате этого процесса энергия Гиббса системы уменьшается, т.е. G=( H - T S)<0 . ( H -энтальпийный фактор,T S -энтропийный фактор растворения). При растворении жидких и твердых веществ S >0. При растворении газов в жидкости S<0. Изменение энтальпии представляет собой алгебраическую сумму изменения энтальпии H кр в результате разрушения кристаллической решетки и изменения энтальпии H сол за счет сольватации частицами растворителя H раств = H кр + H сол . При растворении газов энтальпия H кр =0, т.к. не надо затрачивать энергию на разрушение кристаллической решетки. При растворении может происходить изменение и энтропии, и энтальпии.10 . Идеальный раствор - энтальпия смешивания равна 0 (гомогенные смеси углеводородов; гипотетический раствор, где равенство всех сил межмолекулярного взаимодействия.) Константа растворимости или ПР -это произведение концентраций ионов трудно растворимого электролита в насыщенном растворе при данной температуре- величина постоянная BaCO 3 = Ba + CO 3 , Ks= Условия растворения и образования осадков Осаждение и растворение- обменные реакции, протекающие в растворе электролита ---1)Электролит выпадет в осадок, если произведение концентрации его ионов в растворе больше константы растворимости с(Ba)*с(CO 3)>Kпр 2)Осадок его растворится если все наоборот11. Колигативные свойства растворов. Коллигативные свойства растворов - это те их свойства, которые при данных условиях оказываются равными и независимыми от химической природы растворённого вещества; свойства растворов, которые зависят лишь от количества кинетических единиц и от их теплового движения. Закон Рауля и следствие из него - Пар, находящийся в равновесии с жидкостью, называют насыщенным. Давление такого пара над чистым растворителем (p0) называют давлением или упругостью насыщенного пара чистого растворителя. Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе:p = p0 · χр-ль , где p - давление пара над раствором, ПА;p0 - давление пара над чистым растворителем;χр-ль -мольная доля растворителя.Для растворов электролитов используют несколько другую форму уравнения, позволяющую добавить в неё изотонический коэффициент:Δp = i · p0 · χв-ва, где Δp - собственно изменение давления по сравнению с чистым растворителем;χв-ва - мольная доля вещества в растворе. Из закона Рауля возникает два следствия . Согласно одному из них температура кипения раствора выше температуры кипения растворителя. Это обусловлено тем, что давление насыщенного пара растворителя над раствором становится равным атмосферному давлению (условие кипения жидкости) при более высокой температуре, чем в случае чистого растворителя. Повышение температуры кипения Ткип пропорционально моляльности раствора:. Ткип= Кэ сm где Кэ – эбулиоскопическая постоянная растворителя,cm-моляльная концентрация.Согласно второму следствию из закона Рауля температура замерзания (кристаллизации) раствора ниже температуры замерзания (кристаллизации) чистого растворителя. Это обусловлено более низким давлением пара растворителя над раствором, чем над растворителем. Понижение температуры замерзания (кристаллизации) Тзам пропорционально моляльности раствора: Тзам= Кк сm где Кк - криоскопическая постоянная раствораПонижение температуры кристаллизации растворов.Условием кристаллизации является равенство давления насыщенного пара растворителя над раствором давлению пара над твёрдым растворителем. Поскольку давление пара растворителя над раствором всегда ниже, чем над чистым растворителем, это равенство всегда будет достигаться при температуре более низкой, чем температура замерзания растворителя. Так, океанская вода начинает замерзать при температуре около минус 2 °C.Разность между температурой кристаллизации растворителя и температурой начала кристаллизации раствора есть понижение температуры кристаллизации.Повышение температуры кипения растворовЖидкость кипит при той температуре, при которой общее давление насыщенного пара становится равным внешнему давлению. давление насыщенных паров над раствором при любой температуре будет меньше, чем над чистым растворителем, и равенство его внешнему давлению будет достигаться при более высокой температуре. Таким образом, температура кипения раствора нелетучего вещества T всегда выше, чем температура кипения чистого растворителя при том же давлении T° .Повышение температуры кипения бесконечно разбавленных растворов нелетучих веществ не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора. Самопроизвольный переход растворителя через полупроницаемую мембрану, разделяющую раствор и растворитель или два раствора с различной концентрацией растворенного вещества, называется осмосом. Осмос обусловлендиффузией молекул растворителя через полупроницаемую перегородку, которая пропускает только молекулы растворителя. Молекулы растворителя диффундируют из растворителя в раствор или из менее концентрированного раствора в более концентрированный.Количественно осмос характеризуется осмотическим давлением , равным силе, приходящейся на единицу площади поверхности, и заставляющей молекулы растворителя проникать через полупроницаемую перегородку. Оно равно давлению столба раствора в осмометре высотой h. При равновесии внешнее давление уравновешивает осмотическое давление. В этом случае скорости прямого и обратного переходов молекул через полупроницаемую перегородку становится одинаковыми. Осмотическое давление возрастает с увеличением концентрации растворенного вещества и температуры. Вант-Гофф предположил, что для осмотического давления можно применить уравнение состояния идеального газа: pV = nRТ или p = (n/V) RТ откудаp = с RТ , где p - осмотическое давление (кПа), с – молярная концентрация раствора. Осмотическое давление прямо пропорционально молярной концентрации растворенного вещества и температуре. Осмос играет очень важную роль в биологических процессах , обеспечивая поступление воды в клетки и другие структуры. Растворы с одинаковым осмотическим давлением называются изотоническими . Если осмотическое давление выше внутриклеточного, то оно называется гипертоническим, если ниже внутриклеточного - гипотоническим. Изотонический коэффициент (также фактор Вант-Гоффа; обозначается i) - безразмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных прочих параметрах системы. Изоосмия -относительное постоянство осмотического давления в жидких средах и тканях организма, обусловленное поддержанием на данном уровне концентраций содержащихся в них веществ: электролитов, белков.Это одна из важнейших физиологических констант организма, обеспечиваемых механизмами саморегуляции (Гомеостаз). ГЕМОЛИЗ - разрушение эритроцитов, сопровождающееся выходом из них гемоглобина. Физические причины относится действие высоких и низких температур, ультразвука, к химическим - гемолитические яды, нек-рые лекарственные средства и др. Гемолиз может возникнуть при переливании несовместимой крови, введении гипотонических р-ров.Плазмолиз -при помещении клеток в гипертонический раствор вода из клеток уходит в более концентрированный раствор и наблюдается сморщивание клеток.

Элементы теории растворов электролитов. Сильные и слабые электролиты. Константа ионизации слабого электролита. Закон разведения Оствальда. Ионная сила раствора. Активность и коэффициент активности ионов. Электролиты в организме, слюна как электролит.

Электролиты – это вещества с ионными или сильнополярными ковалентными связями в водных растворах, подвергающиеся электролитической диссоциации, в результат чего образуются катионы и анионы.

Сильные электролиты – вещества, способные диссоциировать нацело. К ним относится большинство солей, а так же некоторые вещества молекулярного строения (HCl).

Слабые электролиты диссоциируют в незначительно степени, и преобладающей формой их является молекулярная (H2S, органические кислоты).

Количественно способность молекулярного электролита к диссоциации определяется степенью ионизации(она зависит от концентрации электролита):

где Nобщ – общее число молекул в растворе; N иониз – число молекул, распавшихся на ионы.

Константа ионизации :

Где [A],[B] – распавшиеся ионы

– не распавшееся на ионы вещество.

Закон разбавления Оствальда:

K= α 2 c/1- α ,

Где α – степень ионизации

С – молярная концентрация

Ионная сила раствора :

I=0.5∑с i z i 2 ,

Где с i – молярная концентрация иона в растворе, моль/л

z i – заряд иона.

Активность иона – это его эффективная концентрация.

Активность связана с молярной концентрацией следующим образом:

где f – коэффициент активности

Электролиты в организме : Na и Cl участвуют в поддержании кислотно-щелочного баланса, осмотического равновесия в организме. Са играет большую роль в построении костной ткани и зубов, в регулировании кислотности крови и ее свертывании, в возбудимости мышечной и нервной ткани. К находится преимущественно в жидкостях тела и мягких тканях, где является необходимым элементом для поддержания осмотического давления, регуляции рН крови.Mg является кофактором многих ферментативных реакций, необходим на всех этапах синтеза белка. В живых организмах Fe является важным микроэлементом, катализирующим процессы обмена кислородом. Сo входит в состав витамина В 12 , задействован при кроветворении, функциях нервной системы и печени, ферментативных реакциях. Zn необходим для метаболизма витамина E, участвует в синтезе разных анаболических гормонов в организме, включая инсулин, тестостерон и гормон роста. Mn оказывает влияние на рост, образование крови и функции половых желёз.

Слюна как электролит является сложной биохимической средой. Количество ионов Н+ и ОН" определяет рН слюны, который в норме равен 6,9. Величина водородного показателя изменяется в зависимости от характера патологического процесса в полости рта. Так. при инфекционных заболеваниях реакция слюны кислая. Из неорганических веществ в слюне содержатся анионы хлора, брома, иода, фтора. Анионы фосфатов, фтора способствуют увеличению электрохимических потенциалов, анион хлора - переносу ионных зарядов и является деполяризатором (фактор, ускоряющий анодные и катодные процессы). В слюне определяются микроэлементы: железо, медь, серебро, марганец, алюминий и др. - и макроэлементы: кальций, калий, натрий, магний, фосфор.

С повышением температуры скорость химического процесса обычно увеличивается. В 1879 г. голландский ученый Я. Вант-Гофф сформулировал эмпирическое правило: с повышением температуры на 10 К скорость большинства хими­ческих реакций возрастает в 2-4 раза.

Математическая запись правила Я. Вант-Гоффа:

γ 10 = (k т+10)/k т , где k т - константа скорости реакции при температуре Т; k т+10 - константа скорости реакции при температуре Т+10; γ 10 - температурный коэффициент Вант-Гоффа. Его значение колеблется от 2 до 4. Для биохимических процессов γ 10 изменяется в пределах от 7 до 10.

Все биологические процессы протекают в определенном интер­вале температур: 45-50°С. Оптимальной температура является 36-40°С. В организме теплокровных животных эта температура поддерживается постоянной благодаря терморегуляции соответству­ющей биосистемы. При изучении биосистем пользуются темпера­турными коэффициентами γ 2 , γ 3 , γ 5 . Для сравнения их приводят к γ 10 .

Зависимость скорости реакции от температуры, в соответствии с правилом Вант-Гоффа, можно представить уравнением:

V 2 /V 1 = γ ((T 2 -T 1)/10)

Энергия активации. Значительное возрастание скорости реакции при повышении температуры нельзя объяснить только увеличением числа столкно­вений между частицами реагирующих веществ, т.к., в соответ­ствии с кинетической теорией газов, с возрастанием температуры количество столкновений увеличивается в незначительной степени. Увеличение скорости реакции с повышением температуры объяс­няется тем, что химическая реакция происходит не при любом столк­новении частичек реагирующих веществ, а только при встрече ак­тивных частиц, обладающих в момент столкновения необходимым избытком энергии.

Энергия, необходимая для превращения неактивных частичек в ак­тивные, называется энергией активации (Eа) . Энергия активации – избыточная, по сравнению со средним значе­нием, энергия, необходимая для вступления реагирующих веществ в реакцию при их столкновении. Энергию активации измеряют в килоджоулях на моль (кДж/моль). Обычно Е составляет от 40 до 200 кДж/моль.



Энергетическая диаграмма экзотермической и эндотермической реакции представлена на рис. 2.3. Для любого химического процесса можно выделить начальное, промежуточное и конечное состояния. На вершине энергетического барьера реагенты находятся в промежуточном состоянии, которое называется активированным комплексом, или переходным состоянием. Разность между энергией активированного комплекса и начальной энергией реагентов равна Еа, а разность между энергией продуктов реакции и исходных веществ (реагентов) - ΔН, тепловому эффекту реакции. Энергия активации, в отличие от ΔН, всегда величина положительная. Для экзотермической реакции (рис. 2.3, а) продукты расположены на более низком энергетическом уровне, чем реагенты (Еа < ΔН).


Рис. 2.3. Энергетические диаграммы реакций: А – экзотермической Б - эндотермической
А Б

Еа является основным фактором, определяющим скорость реакции: если Еа > 120 кДж/моль (выше энергетический барьер, меньше активных частиц в системе), реакция идет медленно; и наоборот, если Еа < 40 кДж/моль, реакция осуществляется с большой скоростью.

Для реакций с участием сложных биомолекул следует учитывать тот факт, что в активированном комплексе, образовавшемся при соударении частиц, молекулы должны быть ориентированы в пространстве определенным образом, так как трансформации подвергается лишь реагирующий участок молекулы, небольшой по от­ношению к ее размеру.

Если известны константы скорости k 1 и k 2 при температурах Т 1 и Т 2 , можно рассчитать значение Еа.

В биохимических процессах энергия активации в 2-3 раза мень­ше, чем в неорганических. Вместе с тем Еа реакции с участием чу­жеродных веществ, ксенобиотиков, значительно превышает Еа обыч­ных биохимических процессов. Этот факт является естественной биозащитой системы от влияния чужеродных веществ, т.е. есте­ственные для организма реакции происходят в благоприятных усло­виях с низкой Еа, а для чужеродных реакций Еа высокая. Это явля­ется генным барьером, характеризующим одну из главных особен­ностей протекания биохимических процессов.



Понравилась статья? Поделитесь с друзьями!