Oblasť nakreslenej postavy online. Online kalkulačka Výpočet určitého integrálu (plocha zakriveného lichobežníka)

V predchádzajúcej časti, venovanej analýze geometrického významu určitého integrálu, sme dostali niekoľko vzorcov na výpočet plochy krivočiareho lichobežníka:

Yandex.RTB R-A-339285-1

S (G) = ∫ a b f (x) d x pre spojitú a nezápornú funkciu y = f (x) na intervale [ a ; b],

S (G) = - ∫ a b f (x) d x pre spojitú a nekladnú funkciu y = f (x) na intervale [ a ; b].

Tieto vzorce sú použiteľné na riešenie relatívne jednoduchých problémov. V skutočnosti budeme musieť často pracovať so zložitejšími obrazcami. V tejto súvislosti budeme túto časť venovať analýze algoritmov na výpočet plochy obrazcov, ktoré sú obmedzené funkciami v explicitnej forme, t.j. ako y = f(x) alebo x = g(y).

Veta

Nech sú funkcie y = f 1 (x) a y = f 2 (x) definované a spojité na intervale [ a ; b] a f 1 (x) ≤ f 2 (x) pre akúkoľvek hodnotu x z [ a ; b]. Potom bude vzorec na výpočet plochy obrázku G ohraničený priamkami x = a, x = b, y = f 1 (x) a y = f 2 (x) vyzerať ako S (G) = ∫ a b f 2 (x) - f 1 (x) d x.

Podobný vzorec bude platiť pre oblasť obrazca ohraničenú priamkami y = c, y = d, x = g 1 (y) a x = g 2 (y): S (G) = ∫ c d ( g 2 (y) - g 1 (y) d y .

Dôkaz

Pozrime sa na tri prípady, pre ktoré bude vzorec platiť.

V prvom prípade, berúc do úvahy vlastnosť aditivity plochy, sa súčet plôch pôvodného obrázku G a krivočiareho lichobežníka G 1 rovná ploche obrázku G 2. Znamená to, že

Preto S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

Posledný prechod môžeme vykonať pomocou tretej vlastnosti určitého integrálu.

V druhom prípade platí rovnosť: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( x) - f 1 (x)) d x

Grafické znázornenie bude vyzerať takto:

Ak sú obe funkcie kladné, dostaneme: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x. Grafické znázornenie bude vyzerať takto:

Prejdime k všeobecnému prípadu, keď y = f 1 (x) a y = f 2 (x) pretínajú os O x.

Priesečníky označíme ako x i, i = 1, 2, . . . , n-1. Tieto body rozdeľujú segment [a; b] na n častí x i-1; x i, i = 1, 2,. . . , n, kde α = x 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

teda

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Posledný prechod môžeme urobiť pomocou piatej vlastnosti určitého integrálu.

Znázornime všeobecný prípad na grafe.

Vzorec S (G) = ∫ a b f 2 (x) - f 1 (x) d x možno považovať za preukázaný.

Teraz prejdime k analýze príkladov výpočtu plochy obrázkov, ktoré sú obmedzené priamkami y = f (x) a x = g (y).

Uvažovanie o ktoromkoľvek z príkladov začneme zostrojením grafu. Obrázok nám umožní reprezentovať zložité tvary ako spojenia jednoduchších tvarov. Ak vám zostavovanie grafov a obrázkov na nich robí ťažkosti, môžete si pri štúdiu funkcie naštudovať časť o základných elementárnych funkciách, geometrickej transformácii grafov funkcií a tiež o zostavovaní grafov.

Príklad 1

Je potrebné určiť plochu obrázku, ktorá je obmedzená parabolou y = - x 2 + 6 x - 5 a priamkami y = - 1 3 x - 1 2, x = 1, x = 4.

Riešenie

Nakreslíme čiary na grafe v karteziánskom súradnicovom systéme.

Na segmente [1; 4 ] graf paraboly y = - x 2 + 6 x - 5 sa nachádza nad priamkou y = - 1 3 x - 1 2. V tomto ohľade na získanie odpovede používame vzorec získaný skôr, ako aj metódu výpočtu určitého integrálu pomocou vzorca Newton-Leibniz:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Odpoveď: S(G) = 13

Pozrime sa na zložitejší príklad.

Príklad 2

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená čiarami y = x + 2, y = x, x = 7.

Riešenie

V tomto prípade máme len jednu priamku umiestnenú rovnobežne s osou x. Toto je x = 7. To si vyžaduje, aby sme sami našli druhú hranicu integrácie.

Zostavme graf a nakreslite naň čiary uvedené v probléme.

Keď máme graf pred očami, môžeme ľahko určiť, že dolná hranica integrácie bude úsečka priesečníka grafu priamky y = x a semiparaboly y = x + 2. Na nájdenie abscisy používame rovnosti:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

Ukazuje sa, že úsečka priesečníka je x = 2.

Upozorňujeme na skutočnosť, že vo všeobecnom príklade na výkrese sa priamky y = x + 2, y = x pretínajú v bode (2; 2), takže takéto podrobné výpočty sa môžu zdať zbytočné. Takéto podrobné riešenie sme tu poskytli len preto, že v zložitejších prípadoch nemusí byť riešenie také zrejmé. To znamená, že súradnice priesečníka čiar je lepšie vždy vypočítať analyticky.

Na intervale [ 2 ; 7] graf funkcie y = x sa nachádza nad grafom funkcie y = x + 2. Použime vzorec na výpočet plochy:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Odpoveď: S (G) = 59 6

Príklad 3

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená grafmi funkcií y = 1 x a y = - x 2 + 4 x - 2.

Riešenie

Nakreslíme čiary do grafu.

Definujme hranice integrácie. Aby sme to dosiahli, určíme súradnice priesečníkov priamok porovnaním výrazov 1 x a - x 2 + 4 x - 2. Za predpokladu, že x nie je nula, rovnosť 1 x = - x 2 + 4 x - 2 sa stáva ekvivalentnou rovnici tretieho stupňa - x 3 + 4 x 2 - 2 x - 1 = 0 s celočíselnými koeficientmi. Ak si chcete osviežiť pamäť na algoritmus na riešenie takýchto rovníc, môžeme si pozrieť časť „Riešenie kubických rovníc“.

Koreň tejto rovnice je x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

Vydelením výrazu - x 3 + 4 x 2 - 2 x - 1 dvojčlenkou x - 1 dostaneme: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Zostávajúce korene nájdeme z rovnice x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3; x 2 = 3 - 13 2 ≈ - 0. 3

Našli sme interval x ∈ 1; 3 + 13 2, v ktorom je číslica G obsiahnutá nad modrou a pod červenou čiarou. To nám pomáha určiť oblasť obrázku:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Odpoveď: S (G) = 7 + 13 3 - ln 3 + 13 2

Príklad 4

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená krivkami y = x 3, y = - log 2 x + 1 a osou x.

Riešenie

Nakreslite všetky čiary do grafu. Graf funkcie y = - log 2 x + 1 dostaneme z grafu y = log 2 x, ak ho umiestnime symetricky okolo osi x a posunieme o jednotku nahor. Rovnica osi x je y = 0.

Označme priesečníky čiar.

Ako vidno z obrázku, grafy funkcií y = x 3 a y = 0 sa pretínajú v bode (0; 0). Je to preto, lebo x = 0 je jediným skutočným koreňom rovnice x 3 = 0.

x = 2 je jediný koreň rovnice - log 2 x + 1 = 0, teda grafy funkcií y = - log 2 x + 1 a y = 0 sa pretínajú v bode (2; 0).

x = 1 je jediný koreň rovnice x 3 = - log 2 x + 1 . V tomto smere sa grafy funkcií y = x 3 a y = - log 2 x + 1 pretínajú v bode (1; 1). Posledné tvrdenie nemusí byť zrejmé, ale rovnica x 3 = - log 2 x + 1 nemôže mať viac ako jeden koreň, pretože funkcia y = x 3 je striktne rastúca a funkcia y = - log 2 x + 1 je prísne klesá.

Ďalšie riešenie zahŕňa niekoľko možností.

Možnosť 1

Obrázok G si môžeme predstaviť ako súčet dvoch krivočiarych lichobežníkov umiestnených nad osou x, z ktorých prvý sa nachádza pod stredovou čiarou na úsečke x ∈ 0; 1 a druhý je pod červenou čiarou na segmente x ∈ 1; 2. To znamená, že plocha sa bude rovnať S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Možnosť č.2

Obrázok G môže byť znázornený ako rozdiel dvoch obrázkov, z ktorých prvý je umiestnený nad osou x a pod modrou čiarou na segmente x ∈ 0; 2 a druhú medzi červenou a modrou čiarou na segmente x ∈ 1; 2. To nám umožňuje nájsť oblasť takto:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

V tomto prípade na nájdenie oblasti budete musieť použiť vzorec v tvare S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. V skutočnosti môžu byť čiary, ktoré ohraničujú obrazec, reprezentované ako funkcie argumentu y.

Vyriešme rovnice y = x 3 a - log 2 x + 1 vzhľadom na x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Získame požadovanú oblasť:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Odpoveď: S (G) = 1 ln 2 - 1 4

Príklad 5

Je potrebné vypočítať plochu obrázku, ktorá je obmedzená čiarami y = x, y = 2 3 x - 3, y = - 1 2 x + 4.

Riešenie

Červenou čiarou nakreslíme čiaru definovanú funkciou y = x. Čiaru y = - 1 2 x + 4 nakreslíme modrou a čiaru y = 2 3 x - 3 čiernou farbou.

Označme priesečníky.

Nájdite priesečníky grafov funkcií y = x a y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 x 1 = 20 + 144 2 = 16; x 2 = 20 - 144 2 = 4 Skontrolujte: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 nie Je riešením rovnice x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 je riešením rovnice ⇒ (4; 2) priesečník i y = x a y = - 1 2 x + 4

Nájdite priesečník grafov funkcií y = x a y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 x 1 = 45 + 729 8 = 9, x 2 45 - 729 8 = 9 4 Kontrola: x 1 = 9 = 3, 2 3 x 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 je riešením rovnice ⇒ (9 ; 3) bod a s y = x a y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 Rovnica nemá riešenie

Nájdite priesečník priamok y = - 1 2 x + 4 a y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1 ) priesečník y = - 1 2 x + 4 a y = 2 3 x - 3

Metóda č.1

Predstavme si plochu požadovaného obrazca ako súčet plôch jednotlivých obrazcov.

Potom je plocha obrázku:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Metóda č.2

Plochu pôvodnej figúry možno znázorniť ako súčet dvoch ďalších figúrok.

Potom vyriešime rovnicu čiary vzhľadom na x a až potom použijeme vzorec na výpočet plochy obrázku.

y = x ⇒ x = y 2 červená čiara y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 čierna čiara y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

Oblasť je teda:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d 2 + ∫ 3 3 2 r + 9 2 - r 2 r = = 7 4 r. 2 - 7 4 r. 1 2 + - r. 3 3 + 3 r. 2 4 + 9 2 r. 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

Ako vidíte, hodnoty sú rovnaké.

Odpoveď: S (G) = 11 3

Výsledky

Aby sme našli oblasť obrázku, ktorá je obmedzená danými čiarami, musíme vytvoriť čiary v rovine, nájsť ich priesečníky a použiť vzorec na nájdenie oblasti. V tejto časti sme preskúmali najbežnejšie varianty úloh.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter

V tomto článku sa dozviete, ako nájsť oblasť obrázku ohraničenú čiarami pomocou integrálnych výpočtov. Prvýkrát sa s formuláciou takéhoto problému stretávame na strednej škole, keď sme práve ukončili štúdium určitých integrálov a je čas začať s geometrickým výkladom získaných poznatkov v praxi.

Čo je teda potrebné na úspešné vyriešenie problému nájdenia oblasti obrázku pomocou integrálov:

  • Schopnosť robiť kompetentné výkresy;
  • Schopnosť riešiť určitý integrál pomocou známeho Newtonovho-Leibnizovho vzorca;
  • Schopnosť „vidieť“ výnosnejšiu možnosť riešenia – t.j. pochopiť, ako bude pohodlnejšie vykonať integráciu v jednom alebo druhom prípade? Pozdĺž osi x (OX) alebo osi y (OY)?
  • Kde by sme boli bez správnych výpočtov?) To zahŕňa pochopenie toho, ako vyriešiť tento iný typ integrálov a správne numerické výpočty.

Algoritmus na riešenie problému výpočtu plochy obrazca ohraničeného čiarami:

1. Vytvárame výkres. Je vhodné to urobiť na kockovanom papieri vo veľkom meradle. Názov tejto funkcie podpíšeme ceruzkou nad každým grafom. Podpisovanie grafov sa vykonáva výlučne pre pohodlie ďalších výpočtov. Po získaní grafu požadovaného čísla bude vo väčšine prípadov okamžite jasné, ktoré limity integrácie sa použijú. Úlohu teda riešime graficky. Stáva sa však, že hodnoty limitov sú zlomkové alebo iracionálne. Preto môžete vykonať ďalšie výpočty, prejdite na druhý krok.

2. Ak nie sú hranice integrácie explicitne špecifikované, nájdeme priesečníky grafov medzi sebou a uvidíme, či sa naše grafické riešenie zhoduje s analytickým.

3. Ďalej musíte analyzovať výkres. V závislosti od toho, ako sú grafy funkcií usporiadané, existujú rôzne prístupy k nájdeniu oblasti obrázku. Pozrime sa na rôzne príklady hľadania oblasti obrazca pomocou integrálov.

3.1. Najklasickejšia a najjednoduchšia verzia problému je, keď potrebujete nájsť oblasť zakriveného lichobežníka. Čo je to zakrivený lichobežník? Toto je plochý údaj ohraničený osou x (y = 0), rovný x = a, x = b a ľubovoľná krivka súvislá na intervale od a predtým b. Navyše tento údaj nie je záporný a nenachádza sa pod osou x. V tomto prípade sa plocha krivočiareho lichobežníka numericky rovná určitému integrálu, vypočítanému pomocou vzorca Newton-Leibniz:

Príklad 1 y = x2 – 3x + 3, x = 1, x = 3, y = 0.

Akými čiarami je obrazec ohraničený? Máme parabolu y = x2 – 3x + 3, ktorá sa nachádza nad osou OH, je nezáporné, pretože všetky body tejto paraboly majú kladné hodnoty. Ďalej, dané rovné čiary x = 1 A x = 3, ktoré prebiehajú rovnobežne s osou OU, sú hraničné čiary obrázku vľavo a vpravo. Dobre y = 0, je to aj os x, ktorá obmedzuje obrázok zdola. Výsledný obrázok je vytieňovaný, ako je možné vidieť na obrázku vľavo. V takom prípade môžete problém okamžite začať riešiť. Pred nami je jednoduchý príklad zakriveného lichobežníka, ktorý potom vyriešime pomocou Newtonovho-Leibnizovho vzorca.

3.2. V predchádzajúcom odseku 3.1 sme skúmali prípad, keď sa nad osou x nachádza zakrivený lichobežník. Teraz zvážte prípad, keď sú podmienky problému rovnaké, okrem toho, že funkcia leží pod osou x. K štandardnému Newton-Leibnizovmu vzorcu sa pridáva mínus. Ako vyriešiť takýto problém, zvážime nižšie.

Príklad 2 . Vypočítajte plochu obrázku ohraničenú čiarami y = x2 + 6x + 2, x = -4, x = -1, y = 0.

V tomto príklade máme parabolu y = x2 + 6x + 2, ktorý vychádza z os OH, rovný x = -4, x = -1, y = 0. Tu y = 0 obmedzuje požadovanú hodnotu zhora. Priamy x = -4 A x = -1 toto sú hranice, v rámci ktorých sa bude počítať určitý integrál. Princíp riešenia problému nájdenia oblasti obrazca sa takmer úplne zhoduje s príkladom číslo 1. Jediný rozdiel je v tom, že daná funkcia nie je kladná a je tiež spojitá na intervale [-4; -1] . Čo tým myslíš nie pozitívne? Ako vidno z obrázku, obrazec, ktorý leží v rámci daného x, má výlučne „záporné“ súradnice, čo musíme vidieť a zapamätať si pri riešení úlohy. Hľadáme oblasť postavy pomocou vzorca Newton-Leibniz, iba so znamienkom mínus na začiatku.

Článok nie je dokončený.

Začneme uvažovať o samotnom procese výpočtu dvojitého integrálu a zoznámime sa s jeho geometrickým významom.

Dvojitý integrál sa číselne rovná ploche rovinného útvaru (oblasť integrácie). Ide o najjednoduchšiu formu dvojitého integrálu, keď sa funkcia dvoch premenných rovná jednej: .

Najprv sa pozrime na problém vo všeobecnej forme. Teraz budete celkom prekvapení, aké jednoduché je v skutočnosti všetko! Vypočítajme plochu plochej postavy ohraničenú čiarami. Pre istotu predpokladáme, že na segmente . Plocha tohto obrázku sa číselne rovná:

Znázornime oblasť na výkrese:

Vyberme si prvý spôsob prechodu oblasti:

Takto:

A hneď dôležitá technická technika: iterované integrály možno vypočítať samostatne. Najprv vnútorný integrál, potom vonkajší integrál. Vrelo odporúčam túto metódu začiatočníkom v tejto oblasti.

1) Vypočítajme vnútorný integrál a integrácia sa vykoná nad premennou „y“:

Neurčitý integrál je tu najjednoduchší a potom sa používa banálny Newton-Leibnizov vzorec, len s tým rozdielom, že limitmi integrácie nie sú čísla, ale funkcie. Najprv sme dosadili hornú hranicu do „y“ (antiderivačná funkcia), potom dolnú hranicu

2) Výsledok získaný v prvom odseku musí byť dosadený do externého integrálu:

Kompaktnejšia reprezentácia celého riešenia vyzerá takto:

Výsledný vzorec je presne pracovný vzorec na výpočet plochy rovinného útvaru pomocou „obyčajného“ určitého integrálu! Pozrite si lekciu Výpočet oblasti pomocou určitého integrálu, tam je na každom kroku!

teda problém výpočtu plochy pomocou dvojitého integrálu nie veľmi odlišné z problému nájdenia oblasti pomocou určitého integrálu! V skutočnosti je to to isté!

Preto by nemali vzniknúť žiadne ťažkosti! Nebudem sa pozerať na veľa príkladov, pretože v skutočnosti ste sa s touto úlohou opakovane stretli.

Príklad 9

Riešenie: Znázornime oblasť na výkrese:

Zvoľme si nasledovné poradie prechodu oblasti:

Tu a ďalej sa nebudem zaoberať tým, ako prechádzať oblasťou, pretože veľmi podrobné vysvetlenia boli uvedené v prvom odseku.

Takto:

Ako som už poznamenal, pre začiatočníkov je lepšie počítať iterované integrály samostatne a ja sa budem držať rovnakej metódy:

1) Najprv sa pomocou Newtonovho-Leibnizovho vzorca zaoberáme vnútorným integrálom:

2) Výsledok získaný v prvom kroku sa dosadí do externého integrálu:

Bod 2 je vlastne nájdenie plochy rovinného útvaru pomocou určitého integrálu.

odpoveď:

Toto je taká hlúpa a naivná úloha.

Zaujímavý príklad nezávislého riešenia:

Príklad 10

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného priamkami , ,

Približný príklad konečného riešenia na konci hodiny.

V príkladoch 9-10 je oveľa výhodnejšie použiť prvý spôsob prechádzania oblasti, mimochodom, zvedaví čitatelia môžu zmeniť poradie prechádzania a vypočítať plochy pomocou druhého spôsobu. Ak neurobíte chybu, potom, prirodzene, dostanete rovnaké hodnoty plochy.

Ale v niektorých prípadoch je druhý spôsob prechádzania oblasťou efektívnejší a na konci kurzu mladého hlupáka sa pozrime na niekoľko ďalších príkladov na túto tému:

Príklad 11

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného čiarami,

Riešenie: Tešíme sa na dve paraboly s vrtochom, ktoré ležia na bokoch. Netreba sa usmievať, podobné veci sa vyskytujú pomerne často vo viacerých integráloch.

Aký je najjednoduchší spôsob, ako urobiť kresbu?

Predstavme si parabolu v podobe dvoch funkcií:
– horná vetva a – dolná vetva.

Podobne si predstavte parabolu v tvare hornej a dolnej pobočky.

Ďalej bodové vykresľovanie pravidiel grafov, čo vedie k takémuto bizarnému obrázku:

Plochu obrázku vypočítame pomocou dvojitého integrálu podľa vzorca:

Čo sa stane, ak zvolíme prvý spôsob prechodu územia? Po prvé, táto oblasť bude musieť byť rozdelená na dve časti. A po druhé, uvidíme tento smutný obrázok: . Integrály, samozrejme, nie sú na superkomplikovanej úrovni, ale... hovorí staré matematické príslovie: kto má blízko k svojim koreňom, nepotrebuje test.

Preto z nedorozumenia uvedeného v podmienke vyjadrujeme inverzné funkcie:

Inverzné funkcie v tomto príklade majú tú výhodu, že špecifikujú celú parabolu naraz bez akýchkoľvek listov, žaluďov, konárov a koreňov.

Podľa druhej metódy bude prechod oblasti takýto:

Takto:

Ako sa hovorí, cítiť rozdiel.

1) Zaoberáme sa vnútorným integrálom:

Výsledok dosadíme do vonkajšieho integrálu:

Integrácia nad premennou „y“ by nemala byť mätúca, ak by tam bolo písmeno „zy“, bolo by skvelé ju integrovať. Hoci kto čítal druhý odsek lekcie Ako vypočítať objem rotačného telesa, s integráciou podľa metódy „Y“ už nezažíva ani najmenšiu nešikovnosť.

Venujte pozornosť aj prvému kroku: integrand je párny a interval integrácie je symetrický okolo nuly. Preto je možné segment rozdeliť na polovicu a výsledok môže byť dvojnásobný. Táto technika je podrobne komentovaná v lekcii. Efektívne metódy výpočtu určitého integrálu.

Čo dodať…. Všetky!

odpoveď:

Ak chcete otestovať svoju integračnú techniku, môžete skúsiť vypočítať . Odpoveď by mala byť úplne rovnaká.

Príklad 12

Pomocou dvojitého integrálu vypočítajte plochu rovinného útvaru ohraničeného čiarami

Toto je príklad, ktorý môžete vyriešiť sami. Zaujímavosťou je, že ak skúsite použiť prvý spôsob prechádzania plochy, figúrka už nebude musieť byť rozdelená na dve, ale na tri časti! A podľa toho dostaneme tri páry opakovaných integrálov. Niekedy sa to stane.

Majstrovská trieda sa skončila a je čas prejsť na úroveň veľmajstra - Ako vypočítať dvojitý integrál? Príklady riešení. V druhom článku sa pokúsim nebyť taký maniak =)

Prajem ti úspech!

Riešenia a odpovede:

Príklad 2:Riešenie: Znázornime oblasť na výkrese:

Zvoľme si nasledovné poradie prechodu oblasti:

Takto:
Prejdime k inverzným funkciám:


Takto:
odpoveď:

Príklad 4:Riešenie: Prejdime k priamym funkciám:


Urobme výkres:

Zmeňme poradie prechádzania oblasťou:

odpoveď:

Určitý integrál. Ako vypočítať plochu obrázku

Poďme ďalej zvážiť aplikácie integrálneho počtu. V tejto lekcii budeme analyzovať typickú a najbežnejšiu úlohu - ako použiť určitý integrál na výpočet plochy rovinného útvaru. Konečne tí, ktorí hľadajú zmysel vo vyššej matematike – nech ho nájdu. Nikdy nevieš. V skutočnom živote budete musieť aproximovať dacha pomocou elementárnych funkcií a nájsť jej plochu pomocou určitého integrálu.

Ak chcete úspešne zvládnuť materiál, musíte:

1) Pochopte neurčitý integrál aspoň na strednej úrovni. Preto by si figuríny mali lekciu najskôr prečítať nie.

2) Byť schopný použiť Newtonov-Leibnizov vzorec a vypočítať určitý integrál. S určitými integrálmi na stránke môžete nadviazať vrúcne priateľské vzťahy Určitý integrál. Príklady riešení.

V skutočnosti, aby ste našli oblasť obrazca, nepotrebujete toľko vedomostí o neurčitom a určitom integráli. Úloha „vypočítať plochu pomocou určitého integrálu“ vždy zahŕňa vytvorenie výkresu, takže vaše znalosti a zručnosti v kreslení budú oveľa naliehavejším problémom. V tomto smere je užitočné osviežiť si pamäť grafov základných elementárnych funkcií a minimálne vedieť zostrojiť priamku, parabolu a hyperbolu. To sa dá (pre mnohých nevyhnutné) pomocou metodického materiálu a článku o geometrických transformáciách grafov.

Úlohu nájsť oblasť pomocou určitého integrálu pozná vlastne každý už od školy a ďalej než k školským osnovám nepôjdeme. Tento článok by možno vôbec neexistoval, no faktom je, že problém nastáva v 99 prípadoch zo 100, keď študent trpí nenávidenou školou a s nadšením ovláda kurz vyššej matematiky.

Materiály tohto workshopu sú prezentované jednoducho, podrobne a s minimom teórie.

Začnime so zakriveným lichobežníkom.

Krivočiary lichobežník je plochý útvar ohraničený osou, priamkami a grafom funkcie súvislej na intervale, ktorý na tomto intervale nemení znamienko. Nechajte tento obrázok nájsť nie menej os x:

Potom plocha krivočiareho lichobežníka sa číselne rovná určitému integrálu. Akýkoľvek určitý integrál (ktorý existuje) má veľmi dobrý geometrický význam. Na lekcii Určitý integrál. Príklady riešení Povedal som, že určitý integrál je číslo. A teraz je čas uviesť ďalší užitočný fakt. Z hľadiska geometrie je určitým integrálom PLOCHA.

teda určitý integrál (ak existuje) geometricky zodpovedá ploche určitého útvaru. Uvažujme napríklad určitý integrál. Integrand definuje krivku v rovine umiestnenej nad osou (tí, ktorí si to želajú, môžu urobiť kresbu) a samotný určitý integrál sa číselne rovná ploche zodpovedajúceho krivočiareho lichobežníka.

Príklad 1

Toto je typický príkaz na zadanie. Prvým a najdôležitejším bodom pri rozhodovaní je konštrukcia výkresu. Okrem toho musí byť výkres vytvorený SPRÁVNY.

Pri konštrukcii výkresu odporúčam nasledovné poradie: najprv je lepšie zostrojiť všetky priame čiary (ak existujú) a len Potom– paraboly, hyperboly, grafy iných funkcií. Je výhodnejšie vytvárať grafy funkcií bod po bode, techniku ​​konštrukcie bod po bode nájdete v referenčnom materiáli Grafy a vlastnosti elementárnych funkcií. Nájdete tam aj veľmi užitočný materiál pre našu lekciu - ako rýchlo postaviť parabolu.

V tomto probléme môže riešenie vyzerať takto.
Nakreslíme výkres (všimnite si, že rovnica definuje os):


Nebudem tieniť zakrivený lichobežník, tu je zrejmé, o ktorej oblasti hovoríme. Riešenie pokračuje takto:

Na segmente sa nachádza graf funkcie nad osou, Preto:

odpoveď:

Kto má problémy s výpočtom určitého integrálu a aplikáciou Newton-Leibnizovho vzorca , pozrite si prednášku Určitý integrál. Príklady riešení.

Po dokončení úlohy je vždy užitočné pozrieť sa na výkres a zistiť, či je odpoveď skutočná. V tomto prípade počítame počet buniek na výkrese „okom“ - no, bude ich asi 9, zdá sa, že je to pravda. Je úplne jasné, že ak sme dostali povedzme odpoveď: 20 štvorcových jednotiek, tak je zrejmé, že niekde sa stala chyba – 20 buniek sa evidentne nezmestí do predmetného čísla, maximálne tucet. Ak je odpoveď záporná, úloha bola tiež vyriešená nesprávne.

Príklad 2

Vypočítajte plochu obrazca ohraničenú čiarami, a osami

Toto je príklad, ktorý môžete vyriešiť sami. Úplné riešenie a odpoveď na konci hodiny.

Čo robiť, ak sa nachádza zakrivený lichobežník pod nápravou?

Príklad 3

Vypočítajte plochu obrázku ohraničenú čiarami a súradnicovými osami.

Riešenie: Urobme kresbu:

Ak je umiestnený zakrivený lichobežník pod nápravou(alebo nakoniec nie vyššie danú os), potom jeho plochu možno nájsť pomocou vzorca:
V tomto prípade:

Pozor! Tieto dva typy úloh by sa nemali zamieňať:

1) Ak vás požiadajú, aby ste jednoducho vyriešili určitý integrál bez akéhokoľvek geometrického významu, potom môže byť záporný.

2) Ak ste požiadaní, aby ste našli plochu obrazca pomocou určitého integrálu, potom je plocha vždy kladná! Preto sa v práve diskutovanom vzorci objavuje mínus.

V praxi sa obrazca najčastejšie nachádza v hornej aj dolnej polrovine, a preto od najjednoduchších školských úloh prechádzame k zmysluplnejším príkladom.

Príklad 4

Nájdite plochu rovinnej postavy ohraničenú čiarami , .

Riešenie: Najprv musíte dokončiť výkres. Všeobecne povedané, pri konštrukcii výkresu v plošných úlohách nás najviac zaujímajú priesečníky čiar. Nájdite priesečníky paraboly a priamky. Dá sa to urobiť dvoma spôsobmi. Prvá metóda je analytická. Riešime rovnicu:

To znamená, že dolná hranica integrácie je , horná hranica integrácie je .
Ak je to možné, je lepšie túto metódu nepoužívať..

Je oveľa ziskovejšie a rýchlejšie stavať čiary bod po bode a hranice integrácie sa vyjasnia „samo od seba“. Technika vytvárania bodov po bode pre rôzne grafy je podrobne popísaná v pomocníkovi Grafy a vlastnosti elementárnych funkcií. Analytická metóda hľadania limitov sa však stále niekedy musí použiť, ak je napríklad graf dostatočne veľký alebo podrobná konštrukcia neodhalila limity integrácie (môžu byť zlomkové alebo iracionálne). A tiež zvážime taký príklad.

Vráťme sa k našej úlohe: racionálnejšie je najprv zostrojiť priamku a až potom parabolu. Urobme výkres:

Opakujem, že pri bodovej konštrukcii sa hranice integrácie najčastejšie zisťujú „automaticky“.

A teraz pracovný vzorec: Ak je na segmente nejaká súvislá funkcia väčšie alebo rovné nejaká spojitá funkcia , potom oblasť obrázku ohraničená grafmi týchto funkcií a čiarami , možno nájsť pomocou vzorca:

Tu už nemusíte premýšľať o tom, kde sa postava nachádza - nad osou alebo pod osou, a zhruba povedané, záleží, ktorý graf je VYŠŠIE(vo vzťahu k inému grafu), a ktorý je DOLE.

V uvažovanom príklade je zrejmé, že na segmente sa parabola nachádza nad priamkou, a preto je potrebné odpočítať od

Hotové riešenie môže vyzerať takto:

Požadovaná hodnota je obmedzená parabolou nad a priamkou pod ňou.
Na segmente podľa zodpovedajúceho vzorca:

odpoveď:

V skutočnosti je školský vzorec pre oblasť krivočiareho lichobežníka v dolnej polrovine (pozri jednoduchý príklad č. 3) špeciálnym prípadom vzorca . Keďže os je určená rovnicou a graf funkcie je umiestnený nie vyššie osy teda

A teraz pár príkladov pre vlastné riešenie

Príklad 5

Príklad 6

Nájdite oblasť obrázku ohraničenú čiarami , .

Pri riešení problémov s výpočtom plochy pomocou určitého integrálu sa niekedy stane vtipná príhoda. Kresba bola urobená správne, výpočty boli správne, ale kvôli neopatrnosti... bola nájdená oblasť nesprávneho obrázku, presne takto sa tvoj skromný sluha niekoľkokrát posral. Tu je skutočný prípad:

Príklad 7

Vypočítajte plochu obrázku ohraničenú čiarami , , , .

Riešenie: Najprv si urobme kresbu:

...Eh, kresba mi vyšla, ale všetko sa zdá byť čitateľné.

Postava, ktorej oblasť potrebujeme nájsť, je vytieňovaná modrou farbou(pozorne sa pozrite na stav - ako je postava obmedzená!). V praxi sa však v dôsledku nepozornosti často vyskytuje „závada“, že musíte nájsť oblasť postavy, ktorá je zatienená zelenou farbou!

Tento príklad je užitočný aj v tom, že vypočítava plochu obrazca pomocou dvoch určitých integrálov. naozaj:

1) Na segmente nad osou je graf priamky;

2) Na segmente nad osou je graf hyperboly.

Je celkom zrejmé, že oblasti sa môžu (a mali by) pridať, preto:

odpoveď:

Prejdime k ďalšej zmysluplnej úlohe.

Príklad 8

Vypočítajte plochu obrazca ohraničenú čiarami,
Predstavme si rovnice v „školskej“ forme a urobme bod po bode:

Z nákresu je zrejmé, že naša horná hranica je „dobrá“: .
Ale aká je spodná hranica?! Je jasné, že to nie je celé číslo, ale čo to je? Možno ? Ale kde je záruka, že výkres je vyrobený s dokonalou presnosťou, môže sa dobre ukázať, že... Alebo koreň. Čo ak sme graf zostavili nesprávne?

V takýchto prípadoch musíte stráviť viac času a analyticky objasniť hranice integrácie.

Nájdite priesečníky priamky a paraboly.
Aby sme to dosiahli, riešime rovnicu:


,

Naozaj,.

Ďalšie riešenie je triviálne, hlavnou vecou nie je zmiasť sa v zámenách a znamienkach, výpočty tu nie sú najjednoduchšie.

Na segmente , podľa zodpovedajúceho vzorca:

odpoveď:

Na záver lekcie sa pozrime na dve zložitejšie úlohy.

Príklad 9

Vypočítajte plochu obrázku ohraničenú čiarami , ,

Riešenie: Znázornime túto postavu na výkrese.

Sakra, zabudol som podpísať rozvrh a prepáčte, nechcel som prerobiť obrázok. Nie je deň kreslenia, skrátka dnes je ten deň =)

Pre stavbu bod po bode je potrebné poznať vzhľad sínusoidy (a vo všeobecnosti je užitočné poznať grafy všetkých elementárnych funkcií), ako aj niektoré sínusové hodnoty, možno ich nájsť v trigonometrická tabuľka. V niektorých prípadoch (ako v tomto prípade) je možné zostrojiť schematický nákres, na ktorom by mali byť grafy a limity integrácie zásadne správne zobrazené.

Nie sú tu žiadne problémy s limitmi integrácie, ktoré vyplývajú priamo z podmienky: „x“ sa mení z nuly na „pi“. Urobme ďalšie rozhodnutie:

Na segmente je graf funkcie umiestnený nad osou, preto:

Úloha č. 3. Nakreslite a vypočítajte plochu figúry ohraničenú čiarami

Aplikácia integrálu na riešenie aplikovaných úloh

Výpočet plochy

Určitý integrál spojitej nezápornej funkcie f(x) sa numericky rovná oblasť krivočiareho lichobežníka ohraničeného krivkou y = f(x), osou O x a priamkami x = a a x = b. V súlade s tým je vzorec oblasti napísaný takto:

Pozrime sa na niekoľko príkladov výpočtu plôch rovinných útvarov.

Úloha č.1. Vypočítajte plochu ohraničenú priamkami y = x 2 +1, y = 0, x = 0, x = 2.

Riešenie. Zostrojme obrazec, ktorého plochu budeme musieť vypočítať.

y = x 2 + 1 je parabola, ktorej vetvy smerujú nahor a parabola je posunutá nahor o jednu jednotku vzhľadom na os O y (obrázok 1).

Obrázok 1. Graf funkcie y = x 2 + 1

Úloha č.2. Vypočítajte plochu ohraničenú priamkami y = x 2 – 1, y = 0 v rozsahu od 0 do 1.


Riešenie. Graf tejto funkcie je parabola vetiev, ktoré sú nasmerované nahor a parabola je posunutá vzhľadom na os O y nadol o jednu jednotku (obrázok 2).

Obrázok 2. Graf funkcie y = x 2 – 1


Úloha č. 3. Nakreslite a vypočítajte plochu figúry ohraničenú čiarami

y = 8 + 2x – x 2 a y = 2x – 4.

Riešenie. Prvá z týchto dvoch čiar je parabola s vetvami smerujúcimi nadol, pretože koeficient x 2 je záporný, a druhá čiara je priamka pretínajúca obe súradnicové osi.

Na zostrojenie paraboly nájdeme súradnice jej vrcholu: y’=2 – 2x; 2 – 2x = 0, x = 1 – úsečka vrcholu; y(1) = 8 + 2∙1 – 1 2 = 9 je jeho ordináta, N(1;9) je jeho vrchol.

Teraz nájdime priesečníky paraboly a priamky riešením sústavy rovníc:

Vyrovnanie pravých strán rovnice, ktorej ľavé strany sú rovnaké.

Dostaneme 8 + 2x – x 2 = 2x – 4 alebo x 2 – 12 = 0, odkiaľ .

Body sú teda priesečníky paraboly a priamky (obrázok 1).


Obrázok 3 Grafy funkcií y = 8 + 2x – x 2 a y = 2x – 4

Zostrojme priamku y = 2x – 4. Prechádza bodmi (0;-4), (2;0) na súradnicových osiach.

Na zostrojenie paraboly môžete použiť aj jej priesečníky s osou 0x, teda korene rovnice 8 + 2x – x 2 = 0 alebo x 2 – 2x – 8 = 0. Pomocou Vietovej vety je jednoduché nájsť jeho korene: x 1 = 2, x 2 = 4.

Obrázok 3 zobrazuje obrazec (parabolický segment M1N M2) ohraničený týmito čiarami.

Druhou časťou problému je nájsť oblasť tohto obrázku. Jeho obsah možno nájsť pomocou určitého integrálu podľa vzorca .

Vo vzťahu k tejto podmienke dostaneme integrál:

2 Výpočet objemu rotačného telesa

Objem telesa získaný z rotácie krivky y = f(x) okolo osi O x sa vypočíta podľa vzorca:

Pri otáčaní okolo osi Oy vzorec vyzerá takto:

Úloha č.4. Určte objem telesa získaného rotáciou zakriveného lichobežníka ohraničeného priamkami x = 0 x = 3 a krivkou y = okolo osi O x.

Riešenie. Nakreslíme obrázok (obrázok 4).

Obrázok 4. Graf funkcie y =

Požadovaný objem je


Úloha č.5. Vypočítajte objem telesa získaný rotáciou zakriveného lichobežníka ohraničeného krivkou y = x 2 a priamkami y = 0 a y = 4 okolo osi O y.

Riešenie. Máme:

Kontrolné otázky



Páčil sa vám článok? Zdieľajte so svojimi priateľmi!