Схемы включения газоразрядных ламп. Устройство и принцип работы газоразрядной лампы История газоразрядной лампы

Современные виды ламп, которые применяются для освещения жилых, офисных, хозяйственно-бытовых помещений на сегодняшний день впечатляют своим разнообразием. Отличаются они друг от друга не только мощностью освещения, но и принципом действия, как следствие – разнообразием оттенков света, долговечностью и потребляемым количеством электроэнергии.

Соответственно, бывают виды ламп освещения, которые потребляют небольшое количество электроэнергии и при этом излучают яркое освещение и минимум тепла – эти лампы классифицируются, как энергосберегающие лампы, виды их по конструкции также разнообразны.

Нового поколения виды электрических ламп бывают таковыми, которые являются устойчивыми к перепадам напряжения в сети и имеют большее количество часов работы и циклов включения/выключения, что в сочетании с низким энергопотреблением значительно отличает их от традиционных ламп накаливания.

Однако, современные лампы освещения не ограничиваются этим, они имеют не только показатели светоотдачи, потребления электроэнергии и количество часов работы, существует и множество и других нюансов, как частота мерцания, экологичность, наличие/отсутствие встроенных выпрямителей тока, и многое другое.

Посему рассмотрим, какие бывают виды ламп на сегодняшний день, в первую очередь – основные положения, затем — рассмотрим принцип действия электрических ламп освещения из такого существующего их перечня:

  • лампы накаливания;
  • газоразрядные лампы;
  • светодиодные лампы.

Лампы накаливания являются наиболее распространенными на территории стран СНГ, и, пожалуй, самым древним видом ламп. Они не имеют ни каких особенных преимуществ, выделяют много тепла, потребляют много электричества, не имеют защиты от перепадов напряжения.

Единственное преимущество – теплое, подобное натуральному, солнечное освещение, которое, по мнению многих, не сравнится с явно искусственным освещением других видов ламп. Кроме того, они являются экологически чистыми в отличие от следующего вида ламп.

Газоразрядные лампы , а также их разновидность — люминесцентные лампы хороши тем, что имеют множество разновидностей, каждая из которых имеет определенное лучшее качество.

Ранее на территории СНГ были распространены классические, ртутные лампы дневного освещения, но на сегодня они в большей степени ушли в небытие и на их место пришли новые их разновидности.

Виды современных газоразрядных ламп применяются не только как обыкновенные источники электрического освещения в быту; они имеют декоративные разновидности, приемлемые для подсветки потолков, ниш и т. д.

Светодиодные лампы являются ничем иным, как современной альтернативой предыдущим двум видам ламп. Эти лампы – нового поколения энергосберегающие, экологичные и долговечные (стойкие к перепадам напряжения) осветительные электрические элементы.

Они имеют явное преимущество перед остальными видами ламп, но единственный недостаток – стоимость, так как технология их производства на сегодня новая и довольно дорогостоящая. Но их долговечность и экономичность, по мнению производителей, окупит разовые затраты на их приобретение.

Виды и принцип работы современных ламп накаливания

Принцип работы лампы накаливания основан на нагреве металлической спирали, находящейся в вакууме (лампы мощностью до 25Вт) или газе аргон или аргон+азот (средней мощности и высокомощные лампы) в герметично запаянной стеклянной колбе.

При прохождении через спираль, ток разогревает ее до температуры, равной впредь до 3000 градусов по Цельсию, вместе с этим происходит и излучение света, инфракрасных лучей.

Сама спираль выполнена из особо прочного и весьма тугоплавкого металла – вольфрама, а степень яркости освещения прямо пропорционально зависит от температуры нагрева; кроме того, газовая среда, в которой находится спираль, может содержать в себе частицы галогенов – соединений 17-ой гр. Таб. Менделеева (F, Cl, Br, I).

Современные лампы накаливания производятся из стекла с металлическим плафоном, имеющим резьбу, по средствам которой происходит фиксация в патроне, но имеются разновидности с контактно-зажимными и штыревыми типами соединений.

Виды ламп накаливания могут иметь четыре модификации, четыре условных обозначения, указывающих на тип спирали и окружающей ее среды в лампе накаливания: В (вакуумная), Б (биспиральная с аргоновым напылением), БО (биспиральная с аргоновым наполнением в опаловой колбе), Г (моноспиральная с аргоновым напылением).

Отдельным видом наиболее современных ламп накаливания являются галогенные лампы накаливания, отличие которых от вышеописанных обусловлено содержанием галогенных частиц в газовой среде лампы накаливания (частиц йода, хлора, брома), которые вступают в реакцию с испарившемся металлом с поверхности спирали.

После этого процесса металл возвращается на поверхность спирали по средствам температурного разложения получившегося соединения. Таким образом, они имеют больший КПД, срок годности и другие характеристики.

Что касается бытового назначения ламп накаливания, то они являются лампы общего назначения и обозначаются аббревиатурой ЛОН.

Виды и принцип работы современных газоразрядных ламп

Принцип работы газоразрядных ламп состоит в том, что видимое излучение света происходит вследствие возникновения разряда электричества в герметичной среде газа (неон, аргон, криптон, ксенон) или пара металлов (натрий, ртуть).

Таким образом, среда газа/пара металла – это и есть проводник тока, который от вольфрамового электрода с большим потенциалом (фазы, «+») проводит его к вольфрамовому электроду с меньшим потенциалом (нуля, «-»), излучая минимум тепла при высокой степени светоотдачи.

При этом в составе среды газа/пара могут применяться и галогены (фтор/F, хлор/Cl, бром/Br, йод/I), которые улучшают светоотдачу и остальные показатели газоразрядных ламп.

Существует также и газоразрядные люминесцентные лампы – лампы, в которых в результате разряда в парах ртути образуется невидимое для человеческого глаза ультрафиолетовое излучение (тепловое излучение), которое преобразуется в видимый свет при помощи находящегося на внутренних стенках колбы напыления люминофора (соединений галофосфата).

подразделяются на лампы низкого и высокого давления – по давлению внутри колбы.

Лампы высокого давления имеют в качестве основного преимущества высшую степень светоотдачи, и подразделяются в свою очередь по типу наполнителя на:

  • ртутные;
  • натриево-ртутные;
  • иодидо-металло-ртутные;
  • инертно-газовые.

Ртутные газоразрядные лампы высокого давления имеют напыление люминофора, является Люминесцентной лампой высокого давления и обозначается аббревиатурой ДРЛ.

Натриево-ртутные газоразрядные лампы высокого давления именуются также как просто натриевые и обозначаются аббревиатурой ДНаТ.

Иодидо-металло-ртутные газоразрядные лампы, а точнее лампы высокого давления с наполнителем — иодидами редкоземельных металлов с вмещением ртутных паров, именуются как металлогалогенные лампы и носят аббревиатуру ДРИ.

Инертно-газовые газоразрядные лампы высокого давления являются сугубо газовыми лампами, в которых применяются аргон, ксенон, неон, криптон или же их смеси и носят названия соответственно содержания газа.

Лампы низкого давления имеют преимущества только при освещении помещений, не нуждающихся в высокой мощности осветительных приборов; чаще всего – это декоративного освещения источники света, которые в зависимости от наполнителя бывают такие:

  • ртутные с инертным газом;
  • натриевые.

Лампы низкого давления с наполнителем паров ртути с примесью разновидностей инертного газа, именуемые как обыкновенные люминесцентные лампы (ЛЛ) и содержат еще слой люминесцена (см. принцип работы газоразрядных ламп).

Лампы низкого давления с наполнителем паров натрия – не являются таковыми, как предыдущие из-за совсем иного принципа действия, обозначаются аббревиатурой ДнаС.

Прочитав вышеописанные виды и принцип работы, Вы уже догадались, что по источнику света эти лампы подразделяются на газоразрядные и люминесцентные, а что касается низкого давления таких ламп, он на сегодняшний день их производят в качестве энергосберегающих.

Виды и принцип работы современных светодиодных ламп

Принцип работы светодиодных ламп состоит в излучении света от находящихся в этих лампах одиночных светодиодов или групп светодиодов, связанных специальной микросхемой, вмещающей в себе преобразователь сетевого тока в рабочий ток, на котором работают данные элементы.

Сам же светодиод представляет собой полупроводниковый аналоговый элемент, ранее использовавшийся для индикации в микроэлектронике. Этот элемент семейства диодов перерабатывает электрический ток в свет по средствам прохождения его (тока) через полупроводниковый кристалл. Кроме того, он имеет свойство пропускать ток только в одном направлении.

Если подробнее о принципе действия светодиода лампы, то он состоит из анода и катода, которые расположены по противоположным сторонам светоизлучающего кристалла, который легирован с этих сторон примесями: с одной – акцепторными, со второй — донорскими. В свою очередь кристалл находится на подложке из различного материала: кремния, силикона или находится в стеклянной оболочке.

При прохождении электрического тока от источника с большим потенциалом (анода, «+»), он движется через кристалл в направлении электрода с меньшим потенциалом (катод, «-»). Эту область перехода тока называют p-n переходом, в котором, собственно и возникает свечение при рекомбинации электронов и дырок в его области.

Виды светодиодных ламп как таковые, различные по конструкции, по составу внутренней среды и остальным техническим параметрам, присущим лампам накаливания и газоразрядным лампам, не существуют.

Имеются различия по форме плафонов (стандарты соответствуют остальным лампам), цветовой отдаче, и по рабочему питанию, что мы рассмотрим подробнее. Касаемо последнего, светодиодные лампы различают:

  • питание 4В;
  • питание 12В;
  • питание 220В.

Светодиодные лампы с питанием 4В применяются для слабомощных источников освещения, часто применяются в декоративных светильниках — «свечках». Соответственно, применяются как вспомогательное локальное, часто-густо декоративное освещение.

Светодиодные лампы 12В являются заменой современных ламп накаливания, также и галогенных ламп, а также разновидностей газоразрядных/люминесцентных ламп. Они имеют достойную мощность освещения при невысокой теплоотдачи, что делает их не только хорошими источниками общего, но и мебельного встроенного освещения.

Светодиодные лампы 220В – используются для высокомощного освещения, входное питание 220В преобразуется в меньшее по средствам встроенного трансформатора и питает светоизлучающие элементы (светодиоды). Единственный вид светодиодных ламп, которые не требуют отдельного подключения трансформатора.

Области применения

Благодаря линейчатому спектру излучения газоразрядные лампы первоначально применялись лишь в специальных случаях, когда получение заданного спектрального состава излучения являлось фактором более важным, чем значение световой отдачи. Возникла широкая номенклатура , предназначенных для применения в научно-исследовательской аппаратуре, которые объединяют под одним общим названием - спектральные лампы.

Рисунок 1. Спектральные лампы с парами натрия и магния

Возможность создания интенсивного ультрафиолетового излучения, отличающегося высокими химической активностью и биологическим действием, привела к использованию газоразрядных ламп в химической и полиграфической промышленности, а также в медицине.

Короткая дуга в газе или парах металла при сверхвысоком давлении отличается высокой яркостью, что позволило в настоящее время отказаться от открытой угольной дуги в прожекторной технике.

Применение люминофоров, позволившее получать газоразрядные лампы с непрерывным спектром излучения в видимой области, определило возможность внедрения газоразрядных ламп в осветительные установки и вытеснение из ряда областей ламп накаливания.

Особенности изотермической плазмы, обеспечивающей получение спектра излучения, близкого к излучению тепловых источников, при температурах, недоступных в лампах накаливания, привели к разработке сверхмощных осветительных ламп со спектром, практически совпадающим с солнечным.

Практическая безынерционность газового разряда позволила применить газоразрядные лампы в фототелеграфе и вычислительной технике, а также создать импульсные лампы, концентрирующие в кратковременном световом импульсе огромную световую энергию.

Видео 1. Импульсные лампы

Требования снижения расхода электроэнергии во всех областях народного хозяйства расширяют применение экономичных газоразрядных ламп, объем выпуска которых непрерывно растет.

Лампы тлеющего разряда

Как известно, нормальный тлеющий разряд возникает при малых плотностях тока. Если при этом расстояние между катодом и анодом настолько мало, что в его пределах не может разместиться столб разряда, то имеют место катодное свечение и отрицательное тлеющее свечение, покрывающие поверхность катода. Расход мощности в лампе тлеющего разряда весьма мал, так как мал ток, а напряжение определяется лишь катодным падением. Излучаемый лампой световой поток незначителен, однако совершенно достаточен для того, чтобы зажигание лампы было заметным, особенно если разряд происходит в газе, дающем цветное излучение, например в неоне (длина волны 600 нм, красный цвет излучения). Такие лампы различной конструкции широко используют в качестве индикаторов. Так называемые цифровые лампы являлись ранее составной частью многих автоматических устройств с цифровыми указателями.

Рисунок 3. Лампа тлеющего разряда предназначенная для индикации цифр

При длинном газоразрядном промежутке с расстоянием между электродами значительно большим, чем прикатодная область, основное излучение разряда сосредотачивается в столбе разряда, который при тлеющем разряде отличается от столба при дуговом разряде лишь меньшей плотностью тока. Излучение такого столба может иметь высокую световую отдачу при большой длине. Высокое значение катодного падения напряжения в тлеющем разряде обусловило разработку ламп на высокое напряжение питания, то есть напряжение на них значительно превосходит напряжение, считающееся безопасным по условиям работы в закрытых помещениях, особенно бытовых. Однако такие лампы с успехом применяют для различного рода рекламных и сигнальных установок.

Рисунок 4. Лампы с длинным столбом тлеющего разряда

Преимуществом лампы тлеющего разряда является простота конструкции катода по сравнению с катодом лампы дугового разряда. Кроме того, тлеющий разряд менее чувствителен к наличию случайных примесей в газоразрядном пространстве, а следовательно, более долговечен.

Лампы дугового разряда

Дуговой разряд применяется практически во всех газоразрядных лампах. Связано это с тем, что при дуговом разряде ослабевает катодное падение напряжения и уменьшается его роль в балансе энергии лампы. Дуговые лампы могут быть изготовлены на рабочие напряжения равные напряжениям электрических сетей. При небольшой и средней плотности тока дугового разряда, а также при невысоком давлении в лампе источником излучения в основном выступает положительный столб, а свечение катода практически не имеет никакого значения. Повышая давление газа или паров металла наполняющих горелку прикатодная область постепенно уменьшается, а при значительных давлениях (более 3 × 10 4 Па) ее практически не остается совсем. Увеличением давления в лампах достигают высоких параметров излучения при небольших расстояниях между электродами. Высокие значения светоотдачи при совсем малых расстояниях можно получить при сверхвысоких давлениях (более 10 6 Па). С ростом давления и уменьшением расстояния между электродами сильно возрастает плотность тока и яркость шнура разряда.

При увеличении давления и плотности тока происходит образование изотермической плазмы, излучение которой в основном состоит из нерезонансных спектральных линий, возникающих при переходе электрона в атоме на более низкие, но не основные уровни.

Дуговой разряд используют в самых различных газах и парах металлов от самых низких давлений до сверхвысоких. В связи с этим конструкции колб дуговых ламп чрезвычайно разнообразны как по форме, так и по роду применяемого материала. Для ламп сверхвысокого давления большое значение приобретает прочность колб в условиях высоких температур, что привело к разработке соответствующих методов их расчета и исследования параметров.

После появления дугового разряда из катодного пятна выбивается основная масса электронов. Светящаяся катодная часть разряда начинается с катодного пятна, представляющего из себя небольшую светящуюся точку на спирали. Катодных пятен бывает несколько. В самокалящихся катодах катодное пятно занимает небольшую часть его поверхности, перемещаясь по ней по мере испарения оксида. Если плотность тока высока на материале катода возникают местные тепловые перегрузки. По причине таких перегрузок приходится применять катоды специальных сложных конструкций. Количество конструкций катодов разнообразно, но все они могут быть разделены на катоды ламп низкого давления, высокого давления и сверхвысокого давления.

Рисунок 5. Трубчатая газоразрядная лампа низкого давления

Рисунок 6. Газоразрядная лампа высокого давления

Рисунок 7. Газоразрядная лампа сверхвысокого давления

Разнообразие материалов, применяемых для колб дуговых ламп, большие значения токов требуют решения вопроса о создании специальных вводов. Подробно о конструкциях газоразрядных ламп можно прочитать в специальной литературе.

Классификация ламп

Аналогично лампам накаливания газоразрядные лампы отличаются между собой областью применения, видом разряда, давлением и видом наполняющего газа или паров металла, использованием люминофора. Если смотреть глазами изготовителей газоразрядных ламп то они могут также отличаться особенностями конструкций, важнейшими из которых являются форма и размеры колбы (газоразрядного промежутка), используемый материал из которого изготавливается колба, материал и конструкция электродов, конструкция цоколей и выводов.

При классификации газоразрядных ламп могут возникнуть некоторые затруднения связанные с многообразием признаков, на основе которых они могут быть классифицированы. В связи с этим для классификации принятой в настоящее время и используемой в качестве основы системы обозначений газоразрядных ламп, определен ограниченный ряд признаков. Стоит отметить, что для ртутных трубчатых низкого давления, являющихся наиболее массовыми газоразрядными лампами, существует своя система обозначений.

Итак, для обозначения газоразрядных ламп пользуются следующими основными признаками:

  1. рабочее давление (лампы сверхвысокого давления – более 10 6 Па, высокого давления – от 3 × 10 4 до 10 6 Па и низкого давления – от 0,1 до 10 4 Па);
  2. состав наполнителя, в котором происходит разряд (газ, пары металла и их соединений);
  3. наименование используемого газа или пара металла (ксенон – Кс, натрий – На, ртуть – Р и тому подобные);
  4. вид разряда (импульсный – И, тлеющий – Т, дуговой – Д).

Форма колбы обозначается буквами: Т – трубчатая, Ш – шаровая; если на колбу лампы наносится люминофор то в обозначение добавляется буква Л. Лампы делятся также по: области свечения – лампы тлеющего свечения и лампы со столбом разряда; по способу охлаждения – на лампы с принудительным и естественным воздушным охлаждением, лампы с водяным охлаждением.

Ртутные трубчатые люминесцентные лампы низкого давления принято обозначать проще. Например, в их обозначении первая буква Л говорит о том, что лампа принадлежит к данному виду источников света, последующие буквы – а их может быть одна, две или даже три, обозначают цветность излучения. Цветность является важнейшим параметром обозначения, так как цветность определяет область использования лампы.

Классификация газоразрядных ламп может также вестись по их значимости в области техники освещения: дуговые лампы высокого давления с исправленной цветностью; дуговые трубчатые лампы высокого давления; дуговые высокого давления; дуговые натриевые лампы низкого и высокого давления; дуговые высокого давления; дуговые шаровые сверхвысокого давления; дуговые ксеноновые трубчатые и шаровые лампы; люминесцентные лампы низкого давления; электродосветные, импульсные и другие виды специальных газоразрядных ламп.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Классификация пускорегулирующих аппаратов - светотехнических изделий, с помощью которых осуществляется питание разрядной лампы от электрической сети. Стартерные и бесстартерные ПРА для люминесцентных ламп. Зажигающие устройства для ламп высокого давления.

    курсовая работа , добавлен 02.05.2011

    Спектральные характеристики излучения разных видов производимых ламп – источников света. Принцип действия, срок службы стандартных ламп накаливания, галогеновых, люминисцентных, разрядных ламп высокого давления, светодиодов. Оценка новых разработок.

    реферат , добавлен 04.03.2012

    Применение разрядных ламп в различных областях народного хозяйства. Технические данные некоторых трубчатых ксеноновых ламп. Перспективность дальнейшего совершенствования трубчатых ксеноновых ламп. Конструктивные особенности, виды режимов работы ламп.

    презентация , добавлен 24.06.2012

    Основные сведения о природе и свойствах ультрафиолетового излучения. Обозначение области применения УФ-света в медицине в лечебных, профилактических и бактерицидных целях. Рассмотрение источников излучения и принципа работы ртутно-кварцевой лампы.

    методичка , добавлен 30.04.2014

    Сущность и способы получения спектра, особенности его формы в изолированных атомах и разреженных газах. Принцип работы и назначение спектрографов, их структура и компоненты. Методика возбуждения излучения неоновой и ртутной ламп и лампы накаливания.

    лабораторная работа , добавлен 26.10.2009

    Типы источников излучения, принципы их классификации. Источники излучения симметричные и несимметричные, газоразрядные, тепловые, с различным спектральным распределением энергии, на основе явления люминесценции. Оптические квантовые генераторы (лазеры).

    реферат , добавлен 19.11.2010

    Технико-эксплуатационные характеристики металлогалогенной лампы. Срок службы, безопасность и особенности эксплуатации. Структура рынка металлогалогенных ламп в РФ. Основные организации, которые занимаются продажей металлогалогенных ламп в г. Саранске.

    реферат , добавлен 27.12.2014

    Лампы общего назначения, их принцип действия, конструкция. Преимущества и недостатки ламп накаливания. Декоративные и иллюминационные лампы. Ограничения импорта, закупок и производства ламп накаливания. Утилизация отработавших люминесцентных ламп.

    Разрядные источники оптического излучения, в том числе светового, работают по принципу преобразования в оптическое излучение энергии дугового электрического разряда.

    Тихий и тлеющий электрические разряды из-за крайне малого КПД излучения для целей освещения и облучения не используют.

    В зависимости от давления внутри разрядной колбы различают лампы: низкого (0,1...10 4 Па), высокого (3×10 4 …10 6 Па) и сверхвысокого (более 10 6 Па) давления. От значения рабочего давления в колбе зависят КПД и спектр излучения разрядной лампы.

    У разрядных ламп низкого давления энергетический КПД (Фл/Рл ) высокий, а световой КПД потока излучения (Фс/Фл ) мал, так как значительная часть их излучения сосредоточена в невидимой УФ-зоне спектра. Для разрядных ламп высокого давления наоборот: энергетический КПД меньше, а световой КПД больше.

    Так как эффективный световой КПД лампы (Фс/Рл ) равен произведению КПД энергетического (Фл/Рл ) и светового (Фс/Фл ), то это обусловило равноценную применимость обоих типов ламп.

    В отличие от ламп накаливания, имеющих сплошной спектр излучения, разрядные лампы обладают ступенчатым или полосовым спектром, состав излучения которого зависит от состава газа и паров металла, наполняющих разрядную колбу (рис.2.1).

    Рис.2.2. Устройство (а) и типовая стартерная схема включения (б) трубчатой разрядной лампы низкого давления:
    1 – колба; 2 – стеклянная ножка; 3 – спиральный электрод; 4 – цоколь; 5 – штыревые токоподводы.

    Разрядные лампы низкого давления имеют разрядную колбу 1 в виде стеклянной трубки, на концах которой в цоколь 4 вмонтированы штыревые токоподводы 5 (рис.2.2 а). В оба цоколя 4 лампы через стеклянные ножки 2 впаяны оксидированные электроды 3 , выполненные в виде моноспирали из вольфрама. У осветительных ламп внутренняя часть колбы из обычного стекла, которое не пропускает УФ-излучение, покрыта слоем люминофора. У ламп для УФ-облучения колбы выполняют из специального кварцевого или увиолевого стекла, которое имеет высокий коэффициент пропускания УФ-излучения соответствующей зоны УФ-спектра. Внутренний объем колбы заполняют аргоном и вводят небольшое количество ртути. Электрический разряд в лампе начинается в атмосфере инертного газа аргона, а затем по мере испарения ртути продолжается в её парах.

    В люминесцентных разрядных лампах преобразование электрической энергии в видимое излучение происходит в два этапа .

    На первом этапе электрический разряд в парах ртути сопровождается УФ-излучением в виде двух монохроматических потоков с длинами волн 253,7 и 184,9 нм, которые сами по себе являются мощными источниками бактерицидного излучения.


    На втором этапе возникающее коротковолновое УФ-излучение преобразуется в слое люминофора колбы в видимое. То есть, в излучение с большей длиной волны и, соответственно, согласно (1.1) и (1.2) с меньшей энергией фотонов, так как что часть энергии фотонов теряется в слое люминофора на втором этапе преобразования. Изменяя состав люминофора, изменяют спектральный состав видимого излучения лампы.

    Маркировка люминесцентных ламп низкого давления содержит буквенное обозначение, начинающееся с буквы Л (люминесцентная) и второй буквы, раскрывающей особенности ее спектра излучения: Б - белая, ТБ - тепло-белая, ХБ - холодно-белая, Д - дневная, Е - естественная, БЕ - белая естественная, ХЕ - холодная естественная. Ц - с повышенной цветопередачей, УФ - ультрафиолетовая, Ф - фотосинтезная, Р - рефлекторная, У - U – образная, К – кольцевая. После буквенного обозначения следуют цифры, указывающие мощность лампы в ваттах, и через дефис - номер разработки. Например, ЛБР-80 - лампа люминесцентная белая рефлекторная мощностью 80 Вт.

    Средняя продолжительность горения осветительных люминесцентных ламп низкого давления составляет 12...15 тыс.ч, светоотдача - 40...80 лм/Вт, мощность - от 3 до 200 Вт (наиболее массовые мощностью 15...80 Вт).

    Из-за падающей волътамперной характеристики электрического разряда для стабилизации режима в цепь разрядной лампы необходимо включать токоограничивающее балластное сопротивление, которое может быть активным (например лампы типа ДРВЛ), индуктивным (большинство ламп), емкостным или их комбинацией. Поэтому в сеть разрядные лампы включают через специальный пускорегулирующий аппарат (ПРА), который обеспечивает зажигание лампы и стабилизацию её дугового разряда в рабочем режиме.

    На схеме, показанной на рисунке 2.2 б, представлен типовой вариант включения люминесцентной лампы низкого давления с использованием дроссельного ПРА и лампового стартера тлеющего разряда. Схема содержит осветительную люминесцентную лампу низкого давления EL, индуктивное балластное сопротивление в виде дросселя LL, ламповый стартер VL, помехоподавляюший конденсатор С2 и компенсирующий конденсатор С1 , повышающий коэффициент мощности установки с 0,4...0,6 до 0,92...0,95. Сопротивление R предназначено для разряда конденсаторов С1 и С2 после отключения лампы от сети.

    При включении схемы и незагоревшейся лампе EL сетевое напряжение практически полностью оказывается приложенным к стартеру, выполненному в виде лампы тлеющего разряда VL. Под действием высокого напряжения в стартере VL возникает тлеющий электрический разряд. Под действием выделяющегося в результате разряда тепла биметаллические электроды стартера VL изгибаются и в конечном итоге замыкаются. Разряд прекращается, и спиральные электроды лампы EL за счет замыкания контактов стартера VL разогреваются током, примерно в 1,5 раза превышающим номинальный ток лампы. Процесс разогрева длится 0,5...3 с, пока биметаллические электроды стартера не остынут и не разомкнут цепь разогрева. В результате размыкания цепи разогрева со стороны дросселя LL возникает ЭДС самоиндукции, которая, накладываясь на напряжение сети, вызывает электрический разряд и загорание предварительно разогретой лампы EL, обладающей к этому моменту повышенной электронной эмиссией нагретых электродов. За счет протекания тока загоревшейся лампы EL на дросселе LL возникает дополнительное падение напряжения, которое уменьшает напряжение на электродах стартера VL ниже значения его зажигания, и работа стартера VL при зажженной лампе EL прекращается.

    В настоящее время выпускаются энергоэконмичные люминесцентные лампы низкого давления пониженной мощности: 18 Вт вместо 20 Вт, 36 Вт вместо 40 Вт и 58 Вт вместо 65 Вт. Они имеют уменьшенный диаметр трубчатой колбы (25 мм вместо 40 мм) и повышенную световую отдачу.

    Наряду с трубчатыми люминесцентными лампами низкого давления для целей электроосвещения широкое применение нашли дуговые ртутные люминесцентные лампы высокого давления типа ДРЛ.

    На рисунке 2.3 а показано устройство четырехэлектродной люминесцентной лампы высокого давления типаДРЛ, а на рисунке, б - типовая схема её включения в сеть.

    Зажиганию четырехэлектродной разрядной лампы типа ДРЛ способствует предварительный тлеющий разряд между основным 11 и поджигающим б электродами (рис. 2.3 а). Период разгорания лампы типа ДРЛ длится около 5 мин. За это время происходит разогрев внутренней колбы 8 и испарение находящейся в ней ртути с одновременным повышением давления внутри колбы 8. При этом электрический разряд распространяется на основные электроды. Лампа выходит на нормальный режим со стабилизацией всех её параметров.

    После отключения разрядной лампы высокого давления её повторное зажигание возможно только после остывания лампы и соответствующего снижения давления во внутренней разрядной колбе до значения, при котором возможен повторный процесс зажигания.

    Газоразрядная лампа - это источник света, излучающий энергию в видимом диапазоне. Свечение в лампе создается непосредственно или опосредованно от электрического разряда в газе, парах металла или в смеси пара и газа.

    Все газоразрядные лампы можно разделить на четыре основные группы:

    • металлогалогенные лампы;
    • натриевые лампы высокого давления;
    • ртутные лампы высокого давления;
    • натриевые лампы низкого давления.

    Для расчёта освещенности помещения вы можете воспользоваться калькулятором расчета освещенности помещения .

    Газоразрядная лампа состоит из стеклянной, керамической или металлической (с прозрачным выходным окном) оболочки цилиндрической, сферической или другой формы, которая содержит газ, иногда небольшое количество металла или др. вещества (например, галоидной соли) с предельно высокой упругостью пара..

    Устройство газоразрядных ламп.

    3.Горелка;

    4.Основной электрод;

    5.Поджигающий электрод;

    6.Токоограничительный резистор

    Характеристики газоразрядных ламп.

    • срок службы от 3000 часов до 20000;
    • эффективность от 40 до 220 лм/Вт;
    • цвет излучения: от 2200 до 20000 К;
    • цветопередача: хорошая (3000 K: Ra>80), отличная (4200 K: Ra>90);
    • компактные размеры излучающей дуги, позволяют создавать световые пучки высокой интенсивности.

    Газоразрядные лампы делятся на три типа:

    • газоразрядные лампы низкого давления (от 0,1 до 25 кПа) - люминесцентные лампы;
    • газоразрядные лампы высокого давления (от 25 до 1000 кПа) лампа ДРЛ;
    • газоразрядные лампы сверхвысокого давления (от 1000 кПа) РЛСВД лампы.

    Разрядные лампы высокого давления это что то среднее между лампами накаливания и люминесцентными лампами. Из за повышенной по сравнению с люминесцентными лампами мощности, газоразрядные лампы позволяют добиться интенсивного, концентрированного света, при этом сохраняя все преимущества газоразрядной технологии (экономичность и гибкость в выборе цветности).

    Газоразрядные лампы применяют для общего освещения, облучения, сигнализации и других целей..

    Принцип действия газоразрядных ламп высокого давления.

    Электрические разряды между электродами вызывают свечение наполнителя в разрядной трубке. Излучаемый лампой свет является следствием происходящих в ней дуговых разрядов. Для ограничения тока и для зажигания всем газоразрядным лампам необходимы специальные ПРА . В отличие от газоразрядных ламп (например, ксеноновых ламп) паросветным лампам после зажигания необходимо определенное время пускового режима (2-3 минуты), чтобы достичь своей полной световой отдачи. Это время необходимо собственно для того, чтобы вещества-наполнители могли полностью испариться.

    Преимущества газоразрядных ламп.

    • высокий КПД;
    • длительный срок службы по сравнению с лампами накаливания;
    • экономичность;
    • высокая степень цветопередачи;
    • хорошая стабильность цвета;
    • хорошие характеристики светового потока в течение всего срока службы.

    Недостатки газоразрядных ламп

    • высокая стоимость;
    • необходимость пускорегулирующей аппаратуры;
    • долгий выход на рабочий режим;
    • высокая чувствительность;
    • наличие токсичных компонентов и как следствие необходимость в инфраструктуре по сбору и утилизации;
    • невозможность работы на любом роде тока;
    • невозможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);
    • наличие мерцания и гудения при работе на переменном токе промышленной частоты;
    • прерывистый спектр излучения;
    • непривычный в быту спектр.


Понравилась статья? Поделитесь с друзьями!