Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки. Датчик влажности почвы: принцип работы и сборка своими руками Простая схема автоматизации полива

Датчик влажности почвы Arduino предназначен для определения влажности земли, в которую он погружен. Он позволяет узнать о недостаточном или избыточном поливе ваших домашних или садовых растений. Подключение данного модуля к контроллеру позволяет автоматизировать процесс полива ваших растений, огорода или плантации (своего рода "умный полив").

Модуль состоит из двух частей: контактного щупа YL-69 и датчика YL-38, в комплекте идут провода для подключения.. Между двумя электродами щупа YL-69 создаётся небольшое напряжение. Если почва сухая, сопротивление велико и ток будет меньше. Если земля влажная - сопротивление меньше, ток - чуть больше. По итоговому аналоговому сигналу можно судить о степени влажности. Щуп YL-69 соединен с датчиком YL-38 по двум проводам. Кроме контактов соединения с щупом, датчик YL-38 имеет четыре контакта для подключения к контроллеру.

  • Vcc – питание датчика;
  • GND – земля;
  • A0 - аналоговое значение;
  • D0 – цифровое значение уровня влажности.
Датчик YL-38 построен на основе компаратора LM393, который выдает напряжение на выход D0 по принципу: влажная почва – низкий логический уровень, сухая почва – высокий логический уровень. Уровень определяется пороговым значением, которое можно регулировать с помощью потенциометра. На вывод A0 подается аналоговое значение, которое можно передавать в контроллер для дальнейшей обработки, анализа и принятия решений. Датчик YL-38 имеет два светодиода, сигнализирующих о наличие поступающего на датчик питания и уровня цифрового сигналы на выходе D0. Наличие цифрового вывода D0 и светодиода уровня D0 позволяет использовать модуль автономно, без подключения к контроллеру.

Технические характеристики модуля

  • Напряжение питания: 3.3-5 В;
  • Ток потребления 35 мА;
  • Выход: цифровой и аналоговый;
  • Размер модуля: 16×30 мм;
  • Размер щупа: 20×60 мм;
  • Общий вес: 7.5 г.

Пример использования

Рассмотрим подключение датчика влажности почвы к Arduino. Создадим проект индикатора уровня влажности почвы для комнатного растения (ваш любимый цветок, который вы иногда забываете поливать). Для индикации уровня влажности почвы будем использовать 8 светодиодов. Для проекта нам понадобятся следующие детали:
  • Плата Arduino Uno
  • Датчик влажности почвы
  • 8 светодиодов
  • Макетная плата
  • Соединительные провода.
Соберем схему, показанную на рисунке ниже


Запустим Arduino IDE. Создадим новый скетч и внесем в него следующие строчки: // Датчик влажности почвы // http://сайт // контакт подключения аналогового выхода датчика int aPin=A0; // контакты подключения светодиодов индикации int ledPins={4,5,6,7,8,9,10,11}; // переменная для сохранения значения датчика int avalue=0; // переменная количества светящихся светодиодов int countled=8; // значение полного полива int minvalue=220; // значение критической сухости int maxvalue=600; void setup() { // инициализация последовательного порта Serial.begin(9600); // настройка выводов индикации светодиодов // в режим OUTPUT for(int i=0;i<8;i++) { pinMode(ledPins[i],OUTPUT); } } void loop() { // получение значения с аналогового вывода датчика avalue=analogRead(aPin); // вывод значения в монитор последовательного порта Arduino Serial.print("avalue=");Serial.println(avalue); // масштабируем значение на 8 светодиодов countled=map(avalue,maxvalue,minvalue,0,7); // индикация уровня влажности for(int i=0;i<8;i++) { if(i<=countled) digitalWrite(ledPins[i],HIGH); //зажигаем светодиод else digitalWrite(ledPins[i],LOW); // гасим светодиод } // пауза перед следующим получением значения 1000 мс delay(1000); } Аналоговый вывод датчика подключен к аналоговому входу Arduino, который представляет собой аналого-цифровой преобразователь (АЦП) с разрешением 10 бит, что позволяет на выходе получать значения от 0 до 1023. Значение переменных для полного полива (minvalue) и сильной сухости почвы (maxvalue) получим экспериментально. Большей сухости почвы соответствует большее значение аналогового сигнала. С помощью функции map масштабируем аналоговое значение датчика в значение нашего светодиодного индикатора. Чем больше влажность почвы, тем больше значение светодиодного индикатора (количество зажженных светодиодов). Подключив данный индикатор к цветку, мы издали можем видеть на индикаторе степень влажности и при определять необходимость полива.

Часто задаваемые вопросы FAQ

1. Не горит светодиод питания
  • Проверьте наличие и полярность подаваемого на датчик YL-38 питания (3,3 – 5 В).
2. При поливе почвы не загорается светодиод индикации влажности почвы
  • Настройте потенциометром порог срабатывания. Проверьте соединение датчика YL-38 с щупом YL-69.
3. При поливе почвы не изменяется значение выходного аналогового сигнала
  • Проверьте соединение датчика YL-38 с щупом YL-69.
  • Проверьте наличие щупа в земле.

Не все владельцы садов и огородов имеют возможность каждый день ухаживать за своими посадками. Тем не менее без своевременного полива нельзя рассчитывать на хороший урожай.

Решением проблемы станет автоматическая система, позволяющая добиться того, чтобы грунт на вашем участке сохранял требуемую степень влажности на протяжении всего вашего отсутствия. Главной составляющей частью любого автополива является датчик влажности почвы.

Понятие датчика влажности

Датчик влажности ещё имеет другие названия. Его называют влагомером или сенсором влажности.


Как видно на фото датчиков влажности почвы, такое устройство представляет собой прибор, состоящий из двух проводов, подключённых к слабому источнику электроэнергии.

При росте влажности между электродами сила тока и сопротивление снижаются и наоборот, если воды в грунте становится недостаточно, данные показатели увеличиваются. Устройство включается простым нажатием кнопки.

Следует учитывать, что электроды будут находиться во влажной почве. Поэтому включение прибора рекомендуется осуществлять через ключ. Такой приём уменьшит отрицательное воздействие коррозии.

Зачем необходим данный прибор

Влагомеры устанавливают не только на открытом грунте, но и в теплицах. Контроль времени полива – вот для чего используют датчики влажности почвы. Вам не понадобиться ничего делать, лишь включить устройство. После оно будет работать без вашего участия.

Однако огородникам и садоводам следует отслеживать состояние электродов, поскольку они могут подвергнуться коррозионному разрушению и в результате выйти из строя.

Виды датчиков влажности почвы

Рассмотрим, какие бывают датчики влажности почвы. Их принято делить на:

Емкостные. Их конструкция схожа с воздушным конденсатором. В основе работы лежит изменение диэлектрических свойств воздуха в зависимости от его влажности, которое вызывает увеличение или снижение ёмкости.

Резистивные. Принцип их действия заключается в изменении сопротивления гигроскопического материала в зависимости от того, сколько влаги в нём содержится.

Психометрические. Принцип работы и схема устройства таких датчиков будут посложнее. В основе лежит физическое свойство потери тепла при испарении. Прибор состоит из сухого и влажного детектора. По разнице температур между ними и судят о количестве водяных паров в воздухе.

Аспирационные. Данный вид во многом схож с предыдущим, отличие составляет вентилятор, который служит для нагнетания воздушной смеси. Аспирационные приборы определения влажности используют в местах со слабым или прерывистым движением воздуха.

Какой датчик влажности выбрать зависит от каждого конкретного случая. На выбор прибора влияют и особенности установленной у вас системы автоматического полива и ваши финансовые возможности.


Материалы, необходимые для создания датчика своими руками

Если вы решили заняться изготовлением влагомера собственноручно, то вам нужно подготовить:

  • электроды диаметром 3-4 мм – 2 шт.;
  • текстолитовое основание;
  • гайки и шайбы.

Инструкция по изготовлению

Как же сделать датчик влажности почвы своими руками? Вот краткий инструктаж:

  • Шаг 1. Прикрепляем электроды к основанию.
  • Шаг 2. Нарезаем на концах электродов резьбу и заостряем с обратной стороны для более лёгкого погружения в почву.
  • Шаг.3. Делаем в основании отверстия и вкручиваем в них электроды. В качестве крепёжных элементов используем гайки и шайбы.
  • Шаг 4. Подбираем нужные провода, которые подойдут к шайбам.
  • Шаг 5. Изолируем электроды. Углубляем их в грунт на 5 – 10 см.

Обратите внимание!

Для работы датчика требуются: сила тока в 35 мА и напряжение в 5 В. В конце подключаем прибор, используя три провода, которые присоединяем к микропроцессору.

Контроллер позволяет скомбинировать датчик с зуммером. После этого подаётся сигнал, если количество влаги в почве резко уменьшается. Альтернативой звукового сигнала может служить загорание лампочки.

Датчик влажности почвы, без сомнения, вещь в хозяйстве нужная. Если у вас есть дача или огород, то непременно озаботьтесь его приобретением. Причём прибор вовсе не обязательно покупать, поскольку можно легко сделать самим.

Фото датчиков влажности почвы

Обратите внимание!

Обратите внимание!

Свтодиод включается при необходимости полива растений
Очень низкий ток потребления от батареи 3 В

Принципиальная схема:

Перечень компонентов:

Резисторы 470 кОм ¼ Вт

Керметный или угольный
подстроечный резистор 47 кОм ½ Вт

Резистор 100 кОм ¼ Вт

Резистор 3.3 кОм ¼ Вт

Резистор 15 кОм ¼ Вт

Резистор 100 Ом ¼ Вт

Лавсановый конденсатор 1 нФ 63 В

Лавсановый конденсатор 330 нФ 63 В

Электролитические конденсаторы 10 мкФ 25 В

Красный светодиод диаметром 5 мм

Электроды (См. замечания)

Батарея 3 В (2 батареи типоразмера AA, N или AAA,
соединенные последовательно)

Назначение устройства:

Схема предназначена для того, чтобы подавать сигнал, если растения нуждаются в поливе. Светодиод начинает мигать, если почва в цветочном горшке слишком пересохла, и гаснет при увеличении влажности. Подстроечный резистор R2 позволяет адаптировать чувствительность схемы под различные типы грунта, размеры цветочного горшка и виды электродов.

Развитие схемы:

Это небольшое устройство пользовалось большим успехом у любителей электроники на протяжении многих лет, начиная с 1999 г. Тем не менее, переписываясь все эти годы со многими радиолюбителями, я понял, что некоторые критические замечания и предложения должны быть учтены. Схема была усовершенствована за счет добавления в нее четырех резисторов, двух конденсаторов и одного транзистора. В результате устройство стало проще в настройке и устойчивее в работе, а яркость свечения удалось увеличить, не используя сверхярких светодиодов.
Было проведено много опытов с различными цветочными горшками и различными датчиками. И хотя, как несложно себе представить, цветочные горшки и электроды сильно отличались друг от друга, сопротивление между двумя электродами, погруженными в почву на 60 мм на расстоянии порядка 50 мм, всегда находилось в пределах 500…1000 Ом при сухой почве, и 3000…5000 Ом при влажной

Работа схемы:

Микросхема IC1A и связанные с ней R1 и C1 образуют генератор прямоугольных импульсов с частотой 2 кГц. Через подстраиваемый делитель R2/R3 импульсы поступают на вход вентиля IC1B. При низком сопротивлении между электродами (т.е., если влаги в цветочном горшке достаточно) конденсатор C2 шунтирует вход IC1B на землю, и на выходе IC1B постоянно присутствует высокий уровень напряжения. Вентиль IC1C инвертирует выходной сигнал IC1B. Таким образом, вход IC1D оказывается блокированным низким уровнем напряжения, и светодиод, соответственно, выключен.
При высыхании почвы в горшке, сопротивление между электродами возрастает, и C2 перестает препятствовать поступлению импульсов на вход IC1B. Пройдя через IC1C, импульсы 2 кГц попадают на вход блокировки генератора, собранного на микросхеме IC1D и окружающих его компонентах. IC1D начинает генерировать короткие импульсы, включающие светодиод через транзистор Q1. Вспышки светодиода указывают на необходимость полива растения.
На базу транзистора Q1 подаются редкие пачки коротких отрицательных импульсов частотой 2 кГц, вырезанные из входных импульсов. Следовательно, и светодиод вспыхивает 2000 раз в секунду, однако человеческий глаз воспринимает такие частые вспышки как постоянное свечение.

Замечания:

  • Для предотвращения окисления электродов используется их питание прямоугольными импульсами.
  • Электроды изготавливаются из двух отрезков зачищенного одножильного провода, диаметром 1 мм и длиной 60 мм. Можно использовать провод, применяемый для прокладки электропроводки.
  • Электроды необходимо полностью погрузить в землю на расстоянии 30…50 мм друг от друга. Материал электродов, размеры и расстояние между ними, в целом, не имеют большого значения.
  • Потребление тока порядка 150 мкА при выключенном светодиоде, и 3 мА при включении светодиода на 0.1 секунду каждые 2 секунды, позволяет устройству работать годами от одного комплекта батарей.
  • При таком небольшом токе потребления в выключателе питания просто нет необходимости. Если, все же, возникнет желание выключить схему, достаточно закоротить электроды.
  • 2 кГц с выхода первого генератора можно проверить без пробника или осциллографа. Их можно просто услышать, если подсоединить электрод Р2 ко входу усилителя низкой частоты с динамиком, а если есть древний высокоомный наушник ТОН-2, то можно обойтись и без усилителя.
  • Схема собрана четко по мануалу и рабочая на 100%!!! ...так что если вдруг "НЕ работает", то это просто неправильная сборка или детали. Честно говоря, до последнего не верил, что "рабочая".
  • Вопрос к спецам!!! Как можно приладить в качестве исполнительного устр-ва помпу на 12В постоянки с потреблением 0.6А и пусковым 1.4А?!
  • Sobos КУДА приладить? Чем управлять?.... Формулируйте вопрос ЧЁТКО.
  • В данной схеме (полное описание http://www..html?di=59789) индикатором ее работы является светодиод, который загорается при "сухом грунте". Есть большое желание автоматически включать помпу полива (12В постоянки с потреблением 0.6А и пусковым 1.4А) вместе с включением этого светодиода, каким образом изменить или "достроить" схему, чтобы это реализовать.
  • ...может хоть какие-нибудь мысли у кого-то есть?!
  • Установите вместо светодиода оптореле или оптосимистор. Дозу воды можно регулировать таймером или расположением датчик/точка полива.
  • Странно, схему собрал и она прекрасно работает но только светодиод "при необходимости полива" полноценно мерцает с частотой приблизительно 2кГц, а не горит постоянно как говорят некоторые форумчане. Что в свою очередь обеспечивает эконимию при использовании батареек. А также немаловажно, что при таком низком питании электроды в земле мало подвергаются коррозии особенно анод. И ещё один момент при определенном уровне влажности светодиод начинает еле еле светиться и так может продолжаться длительное время, что не позволило мне использовать эту схему для включения помпы. Думаю, что для надёжного включения помпы нужен какой-то определитель импульсов указанной частоты поступающих с этой схемы и дающий "команду" на управление нагрузкой. Прошу СПЕЦОВ подсказать схему реализации такого девайса. Хочу на основе этой схемы осуществить автополив на даче.
  • Очень перспективная по своей "экономике" схема которую необходимо доработать и использовать на садовых участках или например на работе, что очень актуально когда выходные или отпуск, а также дома для автоматического полива цветов.
  • всегда находилось в пределах 500…1000 Ом при сухой почве, и 3000…5000 Ом при влажной - в смысле - наоборот!!??
  • Помойму фигня это. Со временем на электродах откладываются соли и система срабатывает не вовремя. Пару лет назад занимался этим, только делал на двух транзисторах по схеме из журнала МК. На неделю хватало, а дальше смещалось. Срабатывал насос и не отключался, заливая цветок. В сети встречал схемы на переменном токе, вот их думаю следует попробовать.
  • Доброго времени суток!!! Как по мне любая затея что-то создать это уже неплохо. - Что касается установки системы на даче - я бы посоветовал включить насос через реле времени (стоит копейки во многих магазинах электроабарудования) настроить его на выключение через время от включения. Таким образом когда ваша система заклинит (ну всякое бывает) то насос отключится через время гарантировано достаточное для полива (подберете опытным путем). - http://tuxgraphics.org/electronics/201006/automatic-flower-watering-II.shtml Вот неплохая вещ, конкретно этую схему не собирал, юзал только связь с интернетом. Немного глюкавое (не факт что мои ручки очень прямые), но все работает.
  • Я собрал схемы для полива но не для этой которая обсуждается в этой теме. Собранные работают одна как и говорилось выше по времени включения помпы, другая, что очень перспективно по уровню в поддоне где закачивается вода непосредственно в поддон. Для растений это самый оптимальный вариант. Но суть вопроса в том, чтобы адаптировать указанную схему. Лишь только по причине даже того, что анод в земле почти не разрушается как при реализации других схем. Так, что прошу подсказать как отследить по частоте импульсов, чтобы включить исполнительное устройство. Проблема ещё усугубляется тем, что светодиод может "тлеть" еле-еле определённое время, а потом только включиться в импульсный режим.
  • Ответ на заданный ранее вопрос, по доработке схемы контроля влажности почвы, получен на другом форуме и проверен на 100% работоспособность:) Если кого интересует пишите в личку.
  • К чему такая конфиденциальность и не указать сразу ссылку на форум. Вот, например, на этом форуме http://forum.homecitrus.ru/index.php?showtopic=8535&st=100 практически задача решена на МК, а на логике решена и мной опробована. Только для того чтоб понять читать надо с начала «книги», а не с конца. Это я пишу заранее для тех, кто прочтет кусок текста и начинает заваливать вопросами. :eek:
  • Ссылка http://radiokot.ru/forum/viewtopic.php?f=1&t=63260 не была сразу дана по причине того, что бы это не рассматривалось как реклама.
  • для [B]Vell65
  • http://oldoctober.com/ru/automatic_watering/#5
  • Это уже пройденный этап. Задача решена другой схемой. В качестве инфрмации. Нижняя улучшенная схема имеет ошибки, горят сопротивления. Печатка на томже сайте выполнена без ошибок. При тестировании схемы были выявлены следующие недостатки: 1. Включается только один раз в сутки, когда уже завяли помидоры, а про огурцы лучше вообще промолчать. А им как раз кода пекло солнышко необходим был [B]капельный полив под корень ведь растения в сильную жару испаряет большое количество влаги особенно огурцы. 2. Не предусмотрена защита от ложного включения когда например ночью фотоэлемент освещается фарами или молнией и происходит срабатывание насоса тогда когда растения спят и им полив не нужен да и ночные включения насоса не способствует здоровому сну домочадцев.
  • Убираем фотодатчик, смотрите первый вариант схемы где он отсутствует, элементы временной цепи генератора импульсов подбираем как вам удобно. У меня R1=3,9 Мом. R8 которое 22м нет. R7=5,1 Мом. Тогда насос включается при сухой почве, на время пока не намокнет датчик. Я взял устройство как пример автомата полива. Огромное спасибо автору.

Многие огородники и садоводы лишены возможности ежедневно ухаживать за посаженными овощами, ягодами, фруктовыми деревьями в силу загруженности по работе или во время отпуска. Тем не менее, растения нуждаются в своевременном поливе. С помощью простых автоматизированных систем можно добиться того, что почва на вашем участке будет сохранять необходимую и стабильную влажность на протяжении всего вашего отсутствия. Для построения огородной системы автополива потребуется основной контрольный элемент – датчик влажности почвы.

Датчик влажности

Датчики влажности также называют иногда влагомерами или сенсорами влажности. Почти все предлагаемые на рынке влагомеры почвы измеряют влажность резистивным способом. Это не совсем точный метод, потому что он не учитывает электролизные свойства измеряемого объекта. Показания прибора могут быть разными при одной и той же влажности грунта, но с разной кислотностью или содержанием солей. Но огородникам-экспериментаторам не столь важны абсолютные показания приборов, как относительные, которые можно настроить для исполнительного устройства подачи воды в определенных условиях.

Суть резистивного метода заключается в том, что прибор измеряет сопротивление между двумя проводниками, помещенными в грунт на расстоянии 2-3 см друг от друга. Это обычный омметр , который входит в любой цифровой или аналоговый тестер. Раньше такие инструменты называли авометрами .

Также существуют приборы со встроенным или выносным индикатором для оперативного контроля над состоянием почвы.

Легко сделать замер разницы проводимости электрического тока перед поливом и после полива на примере горшка с домашним растением алоэ. Показания до полива 101.0 кОм.

Показания после полива через 5 минут 12.65 кОм.

Но обычный тестер лишь покажет сопротивление участка почвы между электродами, но не сможет помочь в автополиве.

Принцип действия автоматики

В системах автополива обычно действует правило «поливай или не поливай». Как правило, никто не нуждается в регулировании силы напора воды. Это связано с использованием дорогостоящих управляемых клапанов и других, ненужных, технологически сложных, устройств.

Почти все предлагаемые на рынке датчики влажности, помимо двух электродов, имеют в своей конструкции компаратор. Это простейший аналого-цифровой прибор, который преобразует входящий сигнал в цифровую форму. То есть при установленном уровне влажности вы получите на его выходе единицу или ноль (0 или 5 вольт). Этот сигнал и станет исходным для последующего исполнительного устройства.

Для автополива наиболее рациональным будет использование в качестве исполнительного устройства электромагнитного клапана. Он включается в разрыв трубы и может также использоваться в системах микро-капельного орошения. Включается подачей напряжения 12 В.

Для простых систем, работающих по принципу « датчик сработал - вода пошла», достаточно использование компаратора LM393. Микросхема представляет собой сдвоенный операционный усилитель с возможностью получения на выходе командного сигнала при регулируемом уровне входного. Чип имеет дополнительный аналоговый выход, который можно подключить к программируемому контроллеру или тестеру. Приблизительный советский аналог сдвоенного компаратора LM393 - микросхема 521СА3.

На рисунке представлено готовое реле влажности вместе с датчиком в китайском исполнении всего за 1$.

Ниже представлен усиленный вариант, с выходным током 10А при переменном напряжении до 250 В, за 3-4$.

Системы автоматизации полива

Если вас интересует полноценная систем автополива, то необходимо задуматься о приобретении программируемого контроллера. Если участок небольшой, то достаточно установить 3-4 датчика влажности для разных типов полива. Например, сад нуждается в меньшем поливе, малина любит влагу, а для бахчи достаточно воды из почвы, за исключением чрезмерно засушливых периодов.

На основании собственных наблюдений и измерений датчиков влажности можно приблизительно рассчитать экономичность и эффективность подачи воды на участках. Процессоры позволяют вносить сезонные корректировки, могут использовать показания измерителей влажности, учитывают выпадение осадков, время года.

Некоторые датчики влажности почвы оснащены интерфейсом RJ-45 для подключения к сети. Прошивка процессора позволяет настроить систему так, что она будет оповещать о необходимости полива через социальные сети или SMS-сообщением. Это удобно в тех случаях, когда невозможно подключить автоматизированную систему полива, например, для комнатных растений.

Для системы автоматизации полива удобно использовать контроллеры с аналоговыми и контактными входами, которые соединяют все датчики и передают их показания по единой шине к компьютеру, планшету или мобильному телефону. Управление исполнительными приборами происходит через WEB-интерфейс. Наиболее распространены универсальные контроллеры:

  • MegaD-328;
  • Arduino;
  • Hunter;
  • Toro.

Это гибкие устройства, позволяющие точно настроить систему автополива и доверить ей полный контроль над садом и огородом.

Простая схема автоматизации полива

Простейшая система автоматизации полива состоит из датчика влажности и управляющего устройства. Можно изготовить датчик влажности почвы своими руками. Понадобится два гвоздя, резистор с сопротивлением 10 кОм и источник питания с выходным напряжением 5 В. Подойдет от мобильного телефона.

В качестве прибора, который выдаст команду к поливу можно использовать микросхему LM393 . Можно приобрести готовый узел или собрать его самостоятельно, тогда понадобятся:

  • резисторы 10 кОм – 2 шт;
  • резисторы 1 кОм – 2 шт;
  • резисторы 2 кОм – 3 шт;
  • переменный резистор 51-100 кОм – 1 шт;
  • светодиоды – 2 шт;
  • диод любой, не мощный – 1 шт;
  • транзистор, любой средней мощности PNP (например, КТ3107Г) – 1 шт;
  • конденсаторы 0.1 мк – 2 шт;
  • микросхема LM393 – 1 шт;
  • реле с порогом срабатывания 4 В;
  • монтажная плата.

Схема для сборки представлена ниже.

После сборки подключите модуль к блоку питания и датчику уровня влажности почвы. На выход компаратора LM393 подсоедините тестер. С помощью построечного резистора установите порог срабатывания. Со временем нужно будет его откорректировать, возможно, не один раз.

Принципиальная схема и распиновка компаратора LM393 представлена ниже.

Простейшая автоматизация готова. Достаточно подключить к замыкающим клеммам исполнительное устройство, например, электромагнитный клапан, включающий и отключающий подачу воды.

Исполнительные устройства автоматизации полива

Основным исполнительным устройством автоматизации полива является электронный клапан с регулировкой потока воды и без. Вторые дешевле, проще в обслуживании и управлении.

Существует множество управляемых кранов и других производителей.

Если на вашем участке случаются проблемы с подачей воды, приобретайте электромагнитные клапаны с датчиком потока. Это предотвратит выгорание соленоида при падении давления воды или прекращении водоснабжения.

Недостатки автоматических систем полива

Почва неоднородна и отличается по своему составу, поэтому один датчик влажности может показывать разные данные на соседних участках. Кроме того, некоторые участки затемняются деревьями и более влажные, чем те, которые расположены на солнечных местах. Также значительное влияние оказывает приближенность грунтовых вод, их уровень по отношению к горизонту.

Используя автоматизированную систему полива, следует учитывать ландшафт местности. Участок можно разбить на сектора. В каждом секторе установить один или более датчиков влажности и рассчитать для каждого собственный алгоритм работы. Это значительно усложнит систему и вряд ли удастся обойтись без контроллера, но впоследствии почти полностью избавит вас от траты времени на нелепое стояние со шлангом в руках под знойным солнцем. Почва будет наполняться влагой без вашего участия.

Построение эффективной системы автоматизированного полива не может основываться только на показаниях датчиков влажности почвы. Непременно следует дополнительно использовать температурные и световые сенсоры, учитывать физиологическую потребность в воде растений разных видов. Необходимо также учитывать сезонные изменения. Многие компании производящие комплексы автоматизации полива предлагают гибкое программное обеспечение для разных регионов, площадей и выращиваемых сельскохозяйственных культур.

Приобретая систему с датчиком влажности, не поддавайтесь на глупые маркетинговые слоганы: наши электроды покрыты золотом. Даже если это так, то вы лишь обогатите почву благородным металлом в процессе электролиза пластин и кошельки не очень честных бизнесменов.

Заключение

В данной статье рассказывалось о датчиках влажности почвы, которые являются основным контрольным элементом автоматического полива. А также был рассмотрен принцип действия системы автоматизации полива, которую можно приобрести в готовом виде или собрать самому. Простейшая система состоит из датчика влажности и управляющего устройства, схема сборки которой своими руками также была представлена в этой статье.

Избавит от однообразной повторяющейся работы, а избежать избытка воды поможет датчик влажности почвы - своими руками такой прибор собрать не так уж сложно. На помощь садоводу приходят законы физики: влага в грунте становится проводником электрических импульсов, и чем ее больше, тем ниже сопротивление. При понижении влажности сопротивление увеличивается, и это помогает отследить оптимальное время полива.

Конструкция датчика влажности почвы представляет собой два проводника, которые подключаются к слабому источнику энергии, в схеме должен присутствовать резистор. Как только количество влаги в пространстве между электродами растет, сопротивление снижается, и сила тока увеличивается.

Влага высыхает – сопротивление растет, сила тока снижается.

Поскольку электроды будут находиться во влажной среде, их рекомендуется включать через ключ, чтобы уменьшить разрушительное влияние коррозии. В обычное время система стоит выключенной и запускается только для проверки влажности нажатием кнопки.

Датчики влажности почвы такого типа можно устанавливать в теплицах – они обеспечивают контроль за автоматическим поливом , поэтому система может функционировать вообще без участия человека. В этом случае система постоянно будет находиться в рабочем состоянии, но состояние электродов придется контролировать, чтобы они не пришли в негодность под воздействием коррозии. Аналогичные устройства можно устанавливать на грядках и газонах на открытом воздухе – они позволят мгновенно получить нужную информацию.

При этом система оказывается намного точнее простого тактильного ощущения. Если человек будет считать землю полностью сухой, датчик покажет до 100 единиц влажности грунта (при оценке в десятеричной системе), сразу после полива это значение вырастает до 600-700 единиц.

После этого датчик позволит контролировать изменение содержания влажности в грунте.

Если датчик предполагается использовать на улице, его верхнюю часть желательно тщательно загерметизировать, чтобы не допустить искажения информации. Для этого ее можно покрыть водонепроницаемой эпоксидной смолой.

Конструкция датчика собирается следующим образом:

  • Основная часть – два электрода, диаметр которых составляет 3-4 мм, они прикрепляются к основанию, изготовленному из текстолита или другого материала, защищенного от коррозии.
  • На одном конце электродов нужно нарезать резьбу, с другой стороны они делаются заостренными для более удобного погружения в грунт.
  • В пластине из текстолита просверливаются отверстия, в которые вкручиваются электроды, их нужно закрепить гайками с шайбами.
  • Под шайбы нужно завести исходящие провода, после чего электроды изолируются. Длина электродов, которые будут погружаться в грунт, составляет около 4-10 см. в зависимости от используемой емкости или открытой грядки.
  • Для работы датчика потребуется источник тока силой 35 мА, система требует напряжения 5В. В зависимости от количества влаги в почве диапазон возвращаемого сигнала составит 0-4,2 В. Потери на сопротивление продемонстрируют количество воды в грунте.
  • Подключение датчика влажности почвы проводится через 3 провода к микропроцессору, для этой цели можно приобрести, например, Arduino. Контроллер позволит соединить систему с зуммером для подачи звукового сигнала при чрезмерном уменьшении влажности почвы, или к светодиоду, яркость освещения будет меняться при изменениях в работе датчика.

Такое самодельное устройство может стать частью автополива в системе "Умный дом", например, с использованием Ethernet-контроллера MegD-328. Web-интерфейс показывает уровень влажности в 10-битной системе: диапазон от 0 до 300 говорит о том, что земля совершенно сухая, 300-700 – в почве достаточно влаги, более 700 – земля мокрая, и полив не требуется.

Конструкция, состоящая из контроллера, реле и элемента питания убирается в любой подходящий корпус, для которого можно приспособить любую пластиковую коробочку.

В домашних условиях использование такого датчика влажности будет очень простым и вместе с тем надежным.

Применение датчика влажности грунта может быть самым разнообразным. Наиболее часто они используются в системах автополива и ручного полива растений:

  1. Их можно установить в цветочных горшках, если растения чувствительны к уровню воды в грунте. Если речь идет о суккулентах, например, о кактусах, необходимо вбирать длинные электроды, которые будут реагировать на изменение уровня влажности непосредственно у корней. Их также можно использовать для и других растений с хрупкой . Подключение к светодиоду позволит точно определить, когда пора проводить .
  2. Они незаменимы для организации полива растений . По аналогичному принципу также собираются датчики влажности воздуха, которые нужны для запуска в работу системы опрыскивания растений. Все это позволит автоматическим образом обеспечить полив растений и нормальный уровень атмосферной влажности.
  3. На даче использование датчиков позволит не держать в памяти время полива каждой грядки, электротехника сама расскажет о количестве воды в грунте. Это позволит не допустить избыточного полива, если недавно прошел дождь.
  4. Применение датчиков очень удобно и в некоторых других случаях. К примеру, они позволят контролировать влажность грунта в подвале и под домом вблизи фундамента. В квартире его можно установить под мойкой: если труба начнет капать, об этом тут же сообщит автоматика, и можно будет избежать затопления соседей и последующего ремонта.
  5. Простое устройство датчика позволит всего за несколько дней полностью оборудовать системой оповещения все проблемные участки дома и сада. Если электроды достаточно длинные, с их помощью можно будет контролировать уровень воды, к примеру, в искусственном небольшом водоеме.

Самостоятельное изготовление датчика поможет оборудовать дом автоматической системой контроля с минимальными затратами.

Комплектующие фабричного производства легко приобрести через интернет или в специализированном магазине, большую часть устройств можно собрать из материалов, которые всегда найдутся в доме любителя электротехники.

Больше информации можно узнать из видео.



Понравилась статья? Поделитесь с друзьями!