Разрядник оин 1 схема подключения. Ограничители перенапряжения в домашней электропроводке - виды и схемы подключения

Устройство защитного отключения (УЗО) – прибор, который защищает человека от поражения током, а также предотвращает поломку электроприемников. Принцип работы устройства прост: оно сравнивает токи в фазном и нулевом проводе. Если они равны, то сеть работает в нормальном режиме и прибор не реагирует. Как только появляется разница величин, обусловленная тем, что по нулю идет меньший ток, чем фазный, что указывает на утечку, тогда прибор незамедлительно (менее чем за 0,1 сек) срабатывает, отключая электроприемник от сети.

Куда ставят однофазное УЗО

Автоматические выключатели могут не реагировать на малые токи утечки, опасные для здоровья и жизни человека, а заземление сети, хоть оберегает, но вот аппаратуру она не спасет. Поэтому и устанавливают УЗО. Смертельно опасным для человека считают ток в 0,1 А.

Ток срабатывания УЗО, т. е. разница в фазе и нуле, равен 0,03 А.

В быту применять более чувствительные УЗО не целесообразно из-за того, что устройство может часто отключать напряжение без видимых на то причин. Для того чтобы понять принцип подключения, необходимо знать, какие провода идут в квартиру.


А именно:

  1. От трансформаторной подстанции кабель тянется к дому или подъезду.
  2. В кабеле присутствует 3 фазных и 1 нулевой провод.
  3. На каждый фазный провод приходится одинаковое количество квартир, чтобы уравновесить нагрузку.
  4. Все это тянется к общему подъездному щиту, куда добавляется еще и заземляющий провод, отводящий часть тока, в случае повреждения изоляции проводов.

По стоякам на каждый этаж к распределительным щиткам тянутся фазы, нулевой провод и заземление. В щитках установлены дополнительные автоматы выключения, отключающие сеть в случае КЗ. От автоматов к каждой квартире тянется 1 фазный, нулевой и заземляющий провода. В квартире уложенная в стене проводка подсоединяется к каждой розетке и к выходам для освещения.

Установка УЗО в однофазной сети не является чем-то сложным. Прибор имеет 2 клеммы входа и 2 выхода. Во входные клеммы помещают, соответственно, фазный и нулевой, не затрагивая провод заземления. Проходящие через устройство провода выходят через выходные клеммы и тянутся непосредственно к приемнику электрической энергии. Само же устройство следует подключать после автомата выключения. Наиболее хорошо себя зарекомендовали устройства фирмы АВВ.

Нередко устройство снабжают цифровым индикатором, которое служит для наглядного контроля нормы напряжения подключенной сети. Часто для этих целей используют индикатор КИПЦ09И.

Особенности УЗО в двухпроводной сети

Двухпроводная сеть подразумевает наличие в квартире только фазы и нуля, без земли. На сегодняшний день данный вид проводки использует только в старых советских постройках или некоторых частных домах.

В двухпроводной сети возможны несколько способов, как подключить УЗО:

  1. Установка единого мощного аппарата, который, в случае неисправности отключит все электрооборудование и освещение в доме.
  2. Установка менее мощных аппаратов отдельно на розетки, либо освещение, разбитые по зонам потребление (ванная, кухня и остальные розетки в комнатах).
  3. Комплексное.

Каждый вариант обладает, как плюсами, так минусами. Первый будет стоить дешевле, т.к. приобретается 1 аппарат, но вот в случае утечки, он отключит все устройства дома, что принесет дискомфорт. Определить, какое именно оборудование вызвало отключение, будет проблематично. Вариант с несколькими устройствами защиты несколько дороже, будет занимать больше пространства в распределительном щитке. Данная схема будет более надежной и точной.

Как подключить УЗО без заземления: схема

Теперь стоит рассмотреть некоторые схематичные решения установки УЗО.

Схема, где УЗО на отдельные группы потребления (ванная, кухня, спальни, а также иногда могут делать именно на освещение), будет выглядеть так: фазный и нулевой провода после автомата выключения разделяются на питание групп потребления электроэнергии.

Каждый комплект проводов (фаза-ноль) идет на отдельную группу.

Тут и монтируют отдельное УЗО на каждую группу, пропуская провода через входные и выходные клеммы. Ставят отдельные АВ на каждую группу. Нулевые провода каждой группы выводят на нулевые шины.


Схема подключения с общим УЗО:

  1. Выходящие из общего автомата нулевой и фазный провод подсоединяют к входным клеммам мощного УЗО на 25 А.
  2. Из выходных клемм провода приходят в квартиру, где питают энергопринимающие устройства, предназначенные для включения в розетку.
  3. При поломке одного электропотребителя или неисправностях проводки, обесточены будут все устройства.

Иногда же, после автомата может устанавливаться ограничитель импульсных перенапряжений (ОИН), защищающий проводку и аппаратуру от грозовых разрядов, и наводимых коммуникационных импульсных перенапряжений. Устанавливается данное устройство между фазой или нулем и землей. В таком случае УЗО устанавливают после ОДИН, обеспечивая полную, многоступенчатую защиту не только человека, но и электроприборов и проводки.

Правила установки УЗО в частном доме без заземления

Современные постройки подлежат обязательному заземлению. Только старые постройки имеют старую модель питания от сети и заземления не имеют. Во избежание несчастных случаев. на таких участках просто необходимо УЗО. Дом может подключаться, как к 1 фазе, так и к 3. От количества фаз зависит выбор устройств защиты. УЗО в частном доме с одной фазой также могут устанавливать с вариантами – одного УЗО, нескольких устройств, отключающих различные группы.

Частный участок отличается тем, что может иметь не только домовую постройку, но и:

  • Гаража;
  • Баню;
  • Сарай.

Каждая из данных построек представляет отдельную группу энергопотребителей, ведь в них присутствует не только освещение, но и прочие части, потребляющие электроэнергию и, порой, в больших количествах, например, насос для подкачки воды в бассейн или тепловые пушки в сарае в зимний период.

На частном участке с одной фазой правильно было бы выбрать схему подключения из нескольких УЗО и автоматов выключения.

В случае же, если частный дом имеет трехфазную сеть, то для его защиты используют специальные устройства защиты. Они отсоединяют одну определенную фазу, в случае, если произошла неисправность. Остальные фазы продолжают работать в нормальном режиме. Нагрузка должна быть равномерно разбросана по фазам, во избежание перекоса напряжений.

Точная схема подключения трехфазного УЗО в однофазной сети

Такой способ является не очень рациональным, но, тем не менее, его иногда используют. Данный метод применяют при последовательном монтаже начальной однофазной сети, к которой после добавляют еще 2 электрических составляющие для общей защитной функции.


Очень важно в данном случае, чтобы фаза подключалась к тому тоководу, через который будет проводиться тестирование УЗО в состоянии работы.

Для этого прозванивают сопротивление каждой из фаз и нуля. При этом должны быть включены силовые контакты и нажата кнопка тестирования. Следует отметить, что проводить данное действие нужно на демонтированном УЗО при отсутствии напряжения.

У трехфазного УЗО, которое подключается к однофазной сети, есть 3 схемы:

  1. Фаза через Line1 – подключение идет к ней, а N через N.
  2. Фаза через Line1и Line2 подключаются параллельно, а N через N и Line3 тоже будет проходить параллельно. Возможно удвоение тока через УЗО.
  3. Фаза через Line1 и Line3 подключается последовательно, а N через Line2 и N – также последовательно. При этом подключении, чувствительность УЗО возрастет.

Благодаря тому, что контакты будут разорваны, на 2 клеммах сопротивление приравняется к бесконечности. А на одной покажется величина сопротивления резистора, который ограничивает ток. Именно к этой клемме и нужно будет подключиться.

Ограничитель перенапряжений это часто недооцениваемый, но очень важный элемент . Этот элемент рекомендован к установке производителями электрооборудования, в то время как среди самих электриков мнения разделены. Давайте разберёмся с этим делом. Наиболее частые вопросы про ограничитель выглядит следующим образом: Каковы классы разрядников? Из чего он состоит и как работает? Как подключить ограничитель перенапряжений? Действительно ли он защищает электрические устройства?

Классы защиты ограничителей

В области напряжения ниже 1000 В ограничители делятся на 4 класса, обозначенные буквами алфавита: A, B, C и D.

  1. Ограничитель класса А не используется в бытовых установках, а применяется для защиты линий электропередач.
  2. Протектор класса B используется для защиты от высоковольтовых скачков напряжения, например, вызванных ударом молнии к линии электропередач.
  3. Ограничитель класса C предназначен для защиты от перенапряжений со слегка более низкими значениями напряжения в сети. Защитные устройства класса B и C обычно устанавливаются в бытовых распределительных устройствах.
  4. Протектор класса D используется для прямой защиты выбранных электроустройств, чувствительных к импульсным помехам и всплескам в 220 В сети. Он монтируется в распределительном щите, за розеткой в электрической коробке или непосредственно в защищаемом устройстве.

Каждое устройство защиты ограничивает электрический потенциал только определенным уровнем. Чем ближе оборудование к А классу — тем более высокая мощность. Например:

  • Класс A уменьшит уровень напряжения до 6 кВ,
  • Класс B уменьшит уровень напряжения до 2,5 кВ,
  • Класс C уменьшит уровень напряжения до 1,5 кВ,
  • Класс D уменьшит уровень напряжения до 0,8 кВ.

Поэтому ограничители отдельных классов следует применять каскадно, постепенно снижая уровень предельного напряжения. То есть если одно распределительное устройство в доме — используем защитные устройства класса как B, так и C (есть сразу 2 в 1 защитные устройства B + C).

Если здание многоэтажное, в главном распределительном щитке должны использоваться защитные устройства класса B, а ограничители класса C следует использовать в распределительных щитках в отдельных квартирах.

Если подключенное к розетке устройство чувствительно к скачкам напряжения, можем также использовать ограничители класса D. К ограничителям класса А у нас нет доступа, это забота энергетической компании.

Поскольку рассматривать будем домашнюю проводку, статья будет посвящена защитным устройствам класса B и класса C (типа I и II).

Обозначение на принципиальных схемах

Основные символы, используемые при обозначении разрядников перенапряжения, следующие:

  1. Общее обозначение разрядника
  2. Разрядник трубчатый
  3. Разрядник вентильный и магнитовентильный

Установка ограничителя перенапряжений

Стандартный разрядник B или C (возможно, B + C) состоит из двух компонентов:

  1. Основа ограничителя
  2. Сменная вставка с защитным элементом

Основа

Основание защитного устройства установлено на DIN-рейке TS35. Оно имеет два хомута. Подключите провод фазы (L) или нейтральный (N) на котором может появиться слишком большой электрический потенциал. С другой стороны подсоедините защитный провод PE, который подключен к защитной линии распределительного устройства.

Защитный проводник должен иметь минимальное поперечное сечение 4 мм2, но не повредит взять ещё больше. В конце концов есть вероятность, что будет течь очень высокий ток.

Есть 3 контакта под терминалом PE. По стандарту в комплект входит вилка, которая вставлена в нужное место и позволяет соединять провода. Благодаря этим зажимам есть возможность удаленного уведомления в случае повреждения вставки или ее перегорания. Этот сигнал может быть подключен, например, к входу блока управления сигнализацией (смотрите схему). В этом случае панель управления будет проинформирована о повреждении вставки размыканием электрической цепи между красным и зеленым проводами.

Вставка

Вставка содержит все наиболее важные элементы, благодаря которым защитник правильно функционирует:

  • Класс B (тип I) — основным элементом является просто искровой промежуток.
  • Класс C (тип II) — здесь деталь варистор является основным элементом.

Как работает защитник от перенапряжений

Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).

Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны — защитный провод.

Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.

Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.

В защитных устройствах класса B основным элементом является искровой промежуток . При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи. Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге. Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.

Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние — то есть разрывает цепь.

Ограничитель класса C имеет внутри варистор . Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале. Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.

Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.

Главным в ограничителях перенапряжений, независимо от используемого класса, является установка заземления с очень хорошими параметрами, то есть с очень низким электрическим сопротивлением. Если это сопротивление слишком велико — ток перенапряжения (вызванный ударом молнии) вместо протектора может протекать через электрическую систему и оставить на пути сгоревшее оборудование, включенное в данный момент к розеткам 220 вольт.

Схема подключения ограничителя к сети

Как подключить ограничитель к домашнему щитку? Начнем с основ. У нас есть однофазная сеть и одномодульный разрядник. Мы хотим защитить им фазовый провод. Тип сети — TN-S.

Подключаем фазный проводник питания непосредственно к разряднику и подключаем разрядник с другой стороны к клеммной колодке PE.

Но в этом домашнем коммутаторе больше ничего, кроме импульсного ограничителя. Добавим недостающие элементы.

Как видите, установка ограничителя перенапряжений не влияет на дальнейшую организацию компонентов в домашнем коммутационном щитке. Соединение устройства остаточного тока и автоматических выключателей осуществляется так же.

Вообще в распределительных устройствах разрядники перенапряжения класса B, C или B + C устанавливаются перед автоматическим выключателем (или автоматическими выключателями) и предохранителями токовой защиты. Но ограничитель является первым элементом, лежащим в основе защиты дома или квартиры.

Трехфазная установка

В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:

  • 3-фазные провода
  • 1 нейтральный провод

Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.

Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).

Безопасность и эффективность ограничителя

В бытовых установках это не часто практикуется, потому что защита от короткого замыкания существует в виде прерывателя или предохранителя, а его малый номинальный ток безопасно защищает сеть от сбоев.

Параметры ограничителя перенапряжений

Перед тем как пойти в магазин и купить это устройство, нужно знать следующее:

  1. Количество модулей (терминалов) — зависит от типа вашей сети. 1 модуль можно купить когда есть однофазная система TN-C. 3 модуля, когда установка находится в сети TN-C трехфазной и 4 модуля когда сеть является трехфазной в TN-S или TT.
  2. Класс (тип) — можно выбирать между классами B, C или B + C. Если не уверены что перед вашей квартирой используется ограничитель типа B, стоит выбрать решение B + C. В противном случае ограничителя типа C будет достаточно.
  3. Номинальное напряжение, в котором работает ограничитель.
  4. Uc — рабочее напряжение протектора, то есть максимальный уровень напряжения который приведет к срабатыванию.
  5. In — номинальный ток ограничителя, то есть какой ток в случае короткого замыкания может протекать через разрядник.
  6. Imax — ток, который разрядник способен принимать во время атмосферного разряда. Обратите внимание, что оба значения (In = 30 000A и Imax = 60 000A) будут относительно большими по отношению к току при нормальной работе приборов в доме.
  7. Up — напряжение до которого уменьшается в случае разрыва. Например если потенциал достигает напряжения 10 000 В в случае всплеска — итоговое значение снижается до 150.

Стоит ли применять ограничитель в сети

Каждый электрик размышляет стоит ли вообще покупать разрядник. Ведь это не самый дешевый элемент электромонтажа. Теоретически, во время ремонта или строительства проводки с нуля в квартире или доме расходы 3000 рублей (в случае 4-модульного протектора) — капля в океане расходов. На практике у защитного блока не всегда будет возможность доказать, что он нужен. Даже если он сработает, снижение напряжения может не всегда защитить чувствительные электронные устройства (лучше обстоит дело с защитой класса D).

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели . Их я указал для наглядности и полноты распределительного щитка. Эта "начинка" щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать "фазу", а куда "ноль" можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Думаю тут все понятно...

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.

Улыбнемся:

Нет постояннее соединения, чем временная скрутка!

Если в вашем доме установлено множество дорогой бытовой техники, лучше позаботиться об организации комплексной защиты электросети. В этой статье мы расскажем об устройствах защиты от импульсных перенапряжений, зачем они нужны, какие бывают и как устанавливаются.

Природа импульсных перенапряжений и их влияние на технику

Многим с детства знакома суета с отключением от сети бытовых электроприборов при первых признаках надвигающейся грозы. Сегодня электрооборудование городских сетей стало более совершенным, из-за чего многие пренебрегают элементарными устройствами защиты. В то же время проблема не исчезла совсем, бытовая техника, особенно в частных домах, все еще находится в зоне риска.

Характер возникновения импульсных перенапряжений (ИП) может быть природным и техногенным. В первом случае ИП возникают из-за попадания молнии в воздушные ЛЭП, причем расстояние между точкой попадания и подверженными риску потребителями может составлять до нескольких километров. Возможен также удар в радиомачты и молниеотводы , подключенные к основному заземляющему контуру, в этом случае в бытовой сети появляется наведенное перенапряжение.

1 — удаленный удар молнии в ЛЭП; 2 — потребители; 3 — контур заземления; 4 — близкий удар молнии в ЛЭП; 5 — прямой удар молнии в громоотвод

Техногенные ИП непредсказуемы, они возникают в результате коммутационных перегрузок на трансформаторных и распределительных подстанциях. При несимметричном повышении мощности (только на одной фазе) возможен резкий скачок напряжения, предусмотреть такое почти невозможно.

Импульсные напряжения очень коротки по времени (менее 0,006 с), они появляются в сети систематически и чаще всего проходят незаметно для наблюдателя. Бытовая техника рассчитана выдерживать перенапряжения до 1000 В, такие появляются наиболее часто. При более высоком напряжении гарантирован выход из строя блоков питания, возможен также пробой изоляции в проводке дома, что приводит к множественным коротким замыканиям и пожару.

Как устроен и как работает УЗИП

УЗИП, в зависимости от класса защиты, может иметь полупроводниковое устройство на варисторах, либо иметь контактный разрядник. В нормальном режиме УЗИП работает в режиме байпаса, ток внутри него протекает через проводящий шунт. Шунт соединен с защитным заземлением через варистор или двумя электродами со строго нормируемым зазором.

При скачке напряжения, даже очень непродолжительном, ток проходит через эти элементы и растекается по заземлению или компенсируется резким падением сопротивления в петле фаза-ноль (короткое замыкание). После стабилизации напряжения разрядник теряет пропускную способность, и устройство снова работает в нормальном режиме.

Таким образом, УЗИП на некоторое время замыкает цепь, чтобы переизбыток напряжения мог преобразоваться в тепловую энергию. Через устройство при этом проходят значительные токи — от десятков до сотни килоампер.

В чем различие между классами защиты

В зависимости от причин возникновения ИП, различают две характеристики волны повышенного напряжения: 8/20 и 10/350 микросекунд. Первая цифра — это время, за которое ИП набирает максимальное значение, вторая — время спада до номинальных значений. Как видно, второй тип перенапряжений более опасный.

Устройства I класса предназначены для защиты от ИП с характеристикой 10/350 мкс, наиболее часто возникающих при разряде молнии в ЛЭП ближе 1500 м к потребителю. Устройства способны кратковременно пропустить через себя ток от 25 до 100 кА, практически все приборы I класса основаны на разрядниках.

УЗИП II класса ориентированы на компенсацию ИП с характеристикой 8/20 мкс, пиковые значения тока в них колеблются от 10 до 40 кА.

Класс защиты III предназначен для компенсации перенапряжений со значениями тока менее 10 кА при характеристике ИП 8/20 мкс. Устройства класса защиты II и III основаны на полупроводниковых элементах.

Может показаться, что достаточно установки только устройств класса I, как наиболее мощных, но это не так. Проблема в том, что чем выше нижний порог пропускного тока, тем менее чувствителен УЗИП. Другими словами: при коротких и относительно низких значениях ИП мощный УЗИП может не сработать, а более чувствительный не справится с токами такой величины.

Устройства с классом защиты III рассчитаны на устранение самых низких ИП — всего в несколько тысяч вольт. Они полностью аналогичны по характеристикам устройствам защиты, устанавливаемым производителями в блоках питания бытовой техники. При дублирующей установке они первыми принимают на себя нагрузку и предотвращают срабатывание УЗИП в приборах, ресурс которых ограничен 20-30 циклами.

Есть ли необходимость в УЗИП, оценка рисков

Полный перечень требований к организации защиты от ИП изложен в МЭК 61643-21, определить обязательность установки можно по стандарту МЭК 62305-2, согласно которому устанавливается конкретная оценка степени риска удара молнии и вызванных им последствий.

В целом при электроснабжении от воздушных ЛЭП установка УЗИП I класса почти всегда предпочтительна, если только не был выполнен комплекс мероприятий по снижению влияния гроз на режим электроснабжения: повторное заземление опор, PEN-проводника и металлических несущих элементов, устройство громоотвода с отдельным контуром заземления, установка систем уравнивания потенциалов.

Более простой способ оценить риск — сопоставить стоимость незащищенной бытовой техники и устройств защиты. Даже в многоэтажных домах, где перенапряжения имеют весьма низкие значения при характеристике 8/20, риск пробоя изоляции или выхода из строя приборов достаточно велик.

Установка устройств в ГРЩ

Большинство УЗИП имеют модульное исполнение и могут быть установлены на DIN-рейку 35 мм. Единственное требование — щит для установки УЗИП должен иметь металлический корпус с обязательным подключением к защитному проводнику.

При выборе УЗИП, помимо основных рабочих характеристик, следует учитывать также номинальный рабочий ток в режиме байпаса, он должен соответствовать нагрузке в вашей электросети. Другой параметр — максимальное напряжение ограничения, оно не должно быть ниже самого высокого значения в рамках суточных колебаний.

УЗИП подключаются последовательно к питающей однофазной или трехфазной сети, соответственно через двухполюсный и четырехполюсный автоматический выключатель. Его установка необходима на случай спаивания электродов разрядника или пробоя варистора, что вызывает постоянное короткое замыкание. На верхние клеммы УЗИП подключают фазы и защитный проводник, на нижние — нулевой.

Пример подключения УЗИП: 1 — ввод; 2 — автоматический выключатель; 3 — УЗИП; 4 — шина заземления; 5 — контур заземления; 6 — счетчик электроэнергии; 7 — дифференциальный автомат; 8 — к автоматам потребителей

При установке нескольких защитных устройств с разными классами защиты требуется их согласование с помощью специальных дросселей, подключенных последовательно с УЗИП. Защитные устройства встраиваются в цепь по возрастанию класса. Без согласования более чувствительные УЗИП будут принимать основную нагрузку на себя и раньше выйдут из строя.

Установки дросселей можно избежать, если протяженность кабельной линии между устройствами превышает 10 метров. По этой причине УЗИП I класса монтируют на фасаде еще до счетчика, защищая от перенапряжений учетный узел, а второй и третий класс устанавливают, соответственно, на ВРУ и этажных/групповых щитках.

Правильное размещение ограничителей перенапряжений в линии электропитания имеет принципиальное значение для корректной работы спроектированной системы защиты от перенапряжений.

Как уже отмечалось ранее, при организации систем защиты от перенапряжений силового электроэнергетического оборудования ограничители монтируются в следующих местах:

  1. снаружи строительного объекта, в зоне молниезащиты 0B, на входе питающих кабелей к устройствам (чаще это ограничители классов II, иногда класса I);
  2. в месте перехода силовых кабелей через стену здания (в зависимости от уровня угрозы это ограничители класса I или II) - в кабельном соединении, заземленным кратчайшим путем к заземляющему устройству;
  3. внутри строительного объекта:
    • в локальных распределительных щитах (в зависимости от уровня угрозы это ограничители классов II или III);
    • поблизости от защищаемых устройств (чаще это ограничители класса III, иногда - класса II, с точки зрения слишком малого номинального тока ограничителей класса III, составляющего чаще всего 16 A).

Необходимо здесь подчеркнуть, что из всех мест расположения ограничителей перенапряжений, предложенных в разделе 443 нормы IEC 60364-4, единственно правильным является расположение в кабельном соединениии при условии, что соединение находится в стене защищаемого здания.

Размещение ограничителей в воздушной линии:

В случае размещения ограничителей в воздушной линии, нельзя забывать о возможности проникновения ударов перенапряжений к силовому кабелю на трассе "столб воздушной линии - здание", что делает это размещение бесполезным.

Размещение ограничителей внутри здания:

1.6. Стойкость ограничителей к короткому замыканию

Ограничители перенапряжений следует защищать от последствий тока короткого замыкания. Из его схемы включения (парралельное включение относительно зажимов защищаемой цепи) следует, что любое действие ограничителя перенапряжений вызывает в последствии протекание тока короткого замыкания в защищаемой линии. По этой причине производитель должен заявить, когда и какой предохранитель следует использовать последовательно с ограничителем, чтобы гарантировать соответствующую стойкость к току короткого замыкания схемы предохранитель - ограничитель перенапряжений.

Определяя потребность использования дополнительной защиты ограничителя переанпряжений включенным последовательно предохранителем, следует сравнить значения номинальных токов I F1 фазных предохранителей защищаемой цепи с допустимым значением тока I DOP , который может протекать в цепи ограничителя перенапряжений (рекомендованный производителем). В зависимости от результатов такого сравнения, следует использовать схему:

  • I F1 ≤ I DOP - без дополнительного защитного предохранителя (рис.1.3.a),
  • I F1 > I DOP - содержащую дополнительный предохранитель F2, включенный последовательно с ограничителями перенапряжений (рис.1.3.b).

Полная версия статьи доступна только зарегистрированным пользователям!

Получите доступ ко всем материалам на сайте совершенно бесплатно!

1.7. Схемы подключения ограничителей перенапряжения

В зависимости от системы заземления сети электроснабжения, используется один из видов соединения ограничителей перенапряжений, представленных на рис. 1.4, 1.5 или 1.6.

В системе сети TT существует возможность применения 4 типовых ограничителей перенапряжений или так называемой системы 3+1 (3 ограничителя перенапряжений + 1 ограничитель N-PE). Такие системы соединений касаются ограничителей классов I и II.

В случае применения ограничителей класса I, необходимо использовать системы с дополнительными предохранителями, соединенными последовательно с ограничителями. Применение предохранителей не обязательно, если выполняются соответствующие условия, описанные в разделе 1.6.


Полная версия статьи доступна только зарегистрированным пользователям!

Получите доступ ко всем материалам на сайте совершенно бесплатно!



Понравилась статья? Поделитесь с друзьями!