Перечислить и охарактеризовать способы защиты атмосферного воздуха. Методы и средства защиты атмосферы Основные методы защиты атмосферы от химических примесей

В целях защиты атмосферы от загрязнения применяют следующие экозащитные мероприятия:

– экологизация технологических процессов;

– очистка газовых выбросов от вредных примесей;

– рассеивание газовых выбросов в атмосфере;

– соблюдение нормативов допустимых выбросов вредных веществ;

– устройство санитарно-защитных зон, архитектурно-планировочные решения и др.

Экологизация технологических процессов – это в первую очередь создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ. Кроме того необходима предварительная очистка топлива или замена его более экологичными видами, применение гидрообеспыливания, рециркуляция газов, перевод различных агрегатов на электроэнергию и др.

Актуальнейшая задача современности – снижение загрязнения атмосферного воздуха отработанными газами автомобилей. В настоящее время ведется активный поиск альтернативного, более «экологически чистого» топлива, чем бензин. Продолжаются разработки двигателей автомобилей, работающих на электроэнергии, солнечной энергии, спирте, водороде и др.

Очистка газовых выбросов от вредных примесей. Нынешний уровень технологий не позволяет добиться полного предотвращения поступления вредных примесей в атмосферу с газовыми выбросами. Поэтому повсеместно используются различные методы очистки отходящих газов от аэрозолей (пыли) и токсичных газо- и парообразных примесей (NО, NО2, SO2, SO3 и др.).

Для очистки выбросов от аэрозолей применяют различные типы устройств в зависимости от степени запыленности воздуха, размеров твердых частиц и требуемого уровня очистки: сухие пылеуловители (циклоны, пылеосадительные камеры), мокрые пылеуловители (скрубберы и др.), фильтры, электрофильтры (каталитические, абсорбционные, адсорбционные) и другие методы для очистки газов от токсичных газо- и парообразных примесей.

Рассеивание газовых примесей в атмосфере – это снижение их опасных концентраций до уровня соответствующего ПДК путем рассеивания пылегазовых выбросов с помощью высоких дымовых труб. Чем выше труба, тем больше ее рассеивающий эффект. К сожалению, этот метод позволяет снизить локальное загрязнение, но при этом проявляется региональное.

Устройство санитарно-защитных зон и архитекгурно-планировочные мероприятия.

Санитарно-защитная зона (СЗЗ) – это полоса, отделяющая источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства. Ширина этих зон составляет от 50 до 1000 м в зависимости от класса производства, степени вредности и количества выделяемых в атмосферу веществ. При этом граждане, чье жилище оказалось в пределах СЗЗ, защищая свое конституционное право на благоприятную среду, могут требовать либо прекращения экологически опасной деятельности предприятия, либо переселения за счет предприятия за пределы СЗЗ.

Архитектурно-планировочные мероприятия включают правильное взаимное размещение источников выброса и населенных мест с учетом направления ветров, выбор под застройку промышленного предприятия ровного возвышенного места, хорошо продуваемого ветрами и т. д.

Предыдущие материалы:

Способы защиты атмосферы от загрязняющих веществ?

Атмосфера - это газовая оболочка планеты Земля, которая вращается вместе с ней. Смесь газов атмосферы называют воздухом.

Загрязнение бывает первичным и вторичным. Первичное загрязнение происходит тогда, когда вещества, попадающие в атмосферу, оказывают неблагоприятное влияние на живые организмы. Например, газ фосген является ядом для всего живого. Вторичное загрязнение происходит тогда, когда относительно безопасное вещество в атмосфере превращается во вредное. Так, фреон малоактивное химическое вещество, но под действием ультрафиолета разлагается с выделением вредного хлора.

Загрязняющие вещества, попадающие в атмосферу, бывают в твердом, жидком и газообразном агрегатных состояниях. Существенный вклад в эмиссию вредных веществ вносят бытовые системы отопления, а точнее твердотопливные печи. Также, большое количество загрязнителей поступает в атмосферу с выхлопными газами различных видов транспорта. Все виды промышленности являются виновниками загрязнения воздуха наиболее токсичными веществами. Немалую роль в загрязнении атмосферы играют животноводческие комплексы.

  1. Методы очистки от загрязняющих веществ промышленных выбросов:
    • Гравитация. Применяется для осаждения крупных пылевых частиц.
    • Фильтрование. Подходит для отделения веществ в твердом агрегатном состоянии с различным диаметром частиц, происходит в специальных аппаратах: циклонах, скрубберах, фильтрах, пылеосадителях.
    • Сорбция. Применяется для очистки выбросов от жидких и газообразных веществ. Заключается в поглощении специальными веществами молекул загрязнителей. Проводится в адсорберах или абсорберах.
    • Конденсация. Применяется для отделения жидких или газообразных загрязнителей. Проводится в специальных реакторах или конденсаторах.
    • Окисление-восстановление. Метод подходит для обезвреживания веществ в различных агрегатных состояниях путем их химического превращения в безопасные. Проводится в специальных реакторах под действием катализаторов или в горелках для термического превращения.
  2. Защита атмосферы от выхлопных газов транспорта :
    • Изменение качества или вида топлива, например, перевод автомобилей на сжиженный газ, спирт и т.д.
    • Установка каталитических, пламенных или жидкостных нейтрализаторов на выхлопную систему автомобилей.
    • Переход на электромобили.
  3. Защита атмосферы от загрязняющих веществ животноводческих комплексов :
    • физико-химические методы, улавливание и нейтрализация вредных веществ происходит в различных фильтрах, скрубберах, пылеосадительных камерах;
    • биологические - извлечение из воздуха углекислого газа и сероводорода с помощью специально выращиваемых растений.
  4. Способы снижения загрязнения воздуха от твердотопливных печей :
    • использование современных каталитических и некаталитических печей, устройство которых способствует полному сгоранию топлива и дожиг дымовых газов;
    • использовать для отопления пеллеты или топливные брикеты, при сгорании которых образуется почти вдвое меньше вредных веществ, чем от угля или дров;
    • переход на газовое или электрическое отопление.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Защита атмосферы Для атмосферы характерна чрезвычайно высокая динами чность, обусловленная как бы стрым перемещением воздушных масс в латера льном и вертикальном направлениях, так и вы сокими скоростями, разнообр азием протекающих в ней физико-химических реакций. Атмо сфера рассматри вается как огромный «химический котел», который находится под воздейст вием многочисленных и изменчивых антропогенных и природных факторов. Г азы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реак ционной способностью. Пыль и сажа, возникающие при сгорании топлива, лес ных пожарах, сорбируют тяжелые ме таллы и радионуклиды и при осаждении н а поверхность могут загрязнить обширные террито рии, проникнуть в орган изм человека через органы дыхания. Загрязнением атмосферы считается прямое или косвенное введени е в нее любого вещества в таком количестве, которое воздействует на каче ство и состав наружного воздуха, нанося вред людям, живой и неживой приро де, экосистемам, строительным материалам, природным ресурсам – всей окр ужающей среде. Очистка воздуха от при месей. Для защиты атмосферы о т негативного антропогенного воздействия используют следующие меры: - экологизацию технологических процессов; - очистку газовых выбросов от вредных примесей; - рассеивание газовых выбросов в атмосфере; - устройство санитарно-защитных зон, архитектурно-планировочные решени я. Безотходная и малоотх одная технология Экологизация тех проц ессов – это создание замкнутых технологических циклов, безотходных и м алоотходных технологий, исключающих попадание в атмосферу вредных заг рязняющих веществ. Наиболее надежным и самым экономичным способом охраны биосферы от вред ных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые пр едложен академиком Н.Н. Семеновым. Под ним подразумевается создание опти мальных технологических систем с замкнутыми материальными и энергети ческими потоками. Такое производство не должно иметь сточных вод, вредн ых выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. То есть понимают принцип организации и функциониро вания производств, при рациональном использовании всех компонентов сы рья и энергии в замкнутом цикле: (первичные сырьевые ресурсы – производство – потреблен ие – вторичные сырьевые ресурсы). Конечно же, понятие «безотходное производство» имеет несколько условн ый характер; это идеальная модель производства, так как в реальных услов иях нельзя полностью ликвидировать отходы и избавиться от влияния прои зводства на окружающую среду. Точнее следует называть такие системы мал оотходными, дающими минимальные выбросы, при которых ущерб природным эк осистемам будет минимален. Малоотходная технология является промежуто чной ступенью при создании безо тходного про изводства. В настоящее время определилось несколько основных направлений охраны биосферы, которые в конечном счете ведут к созданию безотходных техноло гий: 1) разработка и внедрение п ринципиально новых технологических процессов и систем, работающих по з амкнутому циклу, позволяющих исключить образование основного количест ва отходов; 2) переработка отходов производства и потребления в качес тве вторичного сырья; 3) создание территориально-промышленных комплексов с замк нутой структурой материальных потоков сырья и отходов внутри комплекс а. Важность экономного и рационального использования природных р есурсов не требует обоснований. В мире непрерывно растет потребность в с ырье, производство которого обходится всё дороже. Будучи межотраслевой проблемой, разработка малоотходных и безотходных технологий и рациона льное использования вторичных ресурсов требует принятия межотраслевы х решений. Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образов ание основного количества отходов, является основным направлением тех нического прогресса. Очистка газовых выбро сов от вредных примесей Газовые выбросы класс ифицируются по организации отвода и контроля – на организованные и нео рганизованные, по температуре на нагретые и холодные. Организованный выброс – это выброс, поступающий в атмосф еру через специально сооруженные газоходы, воздуховоды, трубы. Неорганизованные называют промышленные выбросы, поступающие в атмосфе ру в виде ненаправленных потоков газа в результате нарушения герметичн ости оборудования. Отсутствие или неудовлетворительной работы оборудо вания по отсосу газа в местах загрузки, выгрузки и хранения продукта. Для снижения загрязнения атмосферы от промышленных выбросов использую т системы очистки газов. Под очисткой газов понимают отделение от газа и ли превращение в безвредное состояние загрязняющего вещества, поступа ющего от промышленного источника. Средства защиты атмосферы должны ограничивать налич ие вредных веществ в воздухе среды обитания человека на уровне не выше П ДК. Во всех случаях должно соблюдаться усло вие: С+Сф 30 мкм. Для частиц с d = 5-30 мкм степень очистки снижается до 80%, а при d == 2-5 мкм она составляет менее 40%. Диаметр частиц, ул авливаемых циклоном на 50%, можно опреде лить по эмпирической формуле Гидравлическое сопротивление высокопроизводительных циклонов соста вляет около 1080 Па. Ци клоны широко применяют при грубой и средней очистке газа от аэрозолей. Другим типом центробежного пылеуловителя служит ротоклон, состоящий и з ротора и вентилятора, помещенного в осадительный кожух. Лопасти вентил ятора, вращаясь, направляют пыль в канал, который ведет в приемник пыли. Циклонные аппараты наиболее распространены в промышленности, так как у них отсутствуют движущиеся части в аппарате и высокая надежнос ть работы при температуре газов до 500 0 С, улавл ивание пыли в сухом виде, почти постоянное гидравлическое сопротивлени е аппарата, простота изготовления, высокая степень очистки. Недостатки: высокое гидравлическое сопротивление 1250-1500 Па, плохое улавлив ание частиц размером меньше 5мкм. Для очистки газов используют также фильтры. Фильтрация основана на прохождении очищаемого газа через различные фи льтрующие материалы. Фильтрующие перегородки состоят из волокнистых и ли зернистых элементов и условно подразделяются на следующие типы. Гибкие пористые перегородки – тканевые материалы из природных, синтет ических или минеральных волокон, нетканные волокнистые материалы (войл оки, бумаги, картон) ячеистые листы (губчатая резина, пенополиуретан, мемб ранные фильтры). Фильтрация - весьма распространенный прием тонкой очистки газов. Ее п реимущества - сравн ительная низкая стоимость оборудования (за исключением металлокерамич еских фильтров) и высокая эффективность тонкой очистки. Недостатки филь трации высокое гидравлическое сопротивление и быстрое забивание фильт рующего материала пылью. Очистка выбросов газообразных веществ промышленных пред приятий В настоящее время, когд а безотходная технология находится в периоде становления и полностью б езотходных предприятий еще нет, основной задачей газоочистки служит до ведение содержания токсичных примесей в газовых примесях до предельно допустимых концентраций (ПДК), установленных санитарными нормами. Промышленные способы очистки газовых выбросов от газо- и парообразных т оксичных примесей можно разделить на пять основных групп: 1 Метод абсорбции – заключается в поглощении отде льных компонентов газообразной смеси абсорбентом (поглотителем) в каче стве которого выступает жидкость. Абсорбенты, применяемые в промышленности, оце ниваются по следующим показателям: 1) абсорбционная ем кость, т. е. растворимость извлекаемого компонента в поглотителе в завис имости от температуры и давления; 2) селективность, ха рактеризуемая соотношением растворимостей разделяемых газов и скорос тей их абсорбции; 3) минимальное давл ение паров во избежание загрязнения очищаемого газа парами абсорбента; 4) дешевизна; 5) отсутствие корро зирующего действия на аппаратуру. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелоч ей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, окс идов марганца и магния, сульфат магния и др. Например, для очистки газов от аммиака, хлористого и фтористого водорода в качестве абсорбента исполь зуют воду, для улавливания водяных паров – серную кислоту, для улавлива ния ароматических углеводородов – масла. Абсорбционная очистка - непрерывный и, как правило, ц иклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цик ла очистки. При физической абсорбции регенерацию абсорбента проводят н агреванием и снижением давления, в результате чего происходит десорбци я поглощенной газовой примеси и ее концентрированно. Для реализа ции процесса очистки применяют абсорберы различных конструкций (плено чные, насадочные, трубчатые и др.). Наиболее распространен насадочный скр уббер, применяемый для очистки газов от диоксида серы, сероводорода, хло роводорода, хлора, оксида и диоксида углерода, фенолов и т. д. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивно го гидродинамического режима этих реакторов, работающих при скорости г аза 0,02-0,7 м/с. Объемы ап паратов поэтому велики и установки громоздки. Абсорбционные методы характеризуются непрерывностью и универсальн остью процесса, экономичностью и возможностью извлечения больших коли честв примесей из газов. Недостаток этого метода в том, что насадочные ск рубберы, барботажные и даже пенные аппараты обеспечивают достаточно вы сокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технол огические схемы мокрой очистки, как правило, сложны, многоступенчаты и о чистные реакторы (особенно скрубберы) име ют большие объемы. Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличн ости и безотходности. Но и циклические системы мокрой очистки конкур ентоспособны только тогда, когда они совмещены с пылеочисткой и охлажде нием газа. 2. Метод хемосорбции – основан на поглощении газов и паров твердыми и жид кими поглотителями, в результате чего образуются мало летучие и малорас творимые соединения. Большинство хемосорбционных процессов газоочист ки обратимы, т. е. при повышении температуры поглотительного раствора хи мические соединения, образовавшиеся при хемосорбции, разлагаются с рег енерацией активных компонентов поглотительного раствора и с десорбцие й поглощенной из газа примеси. Этот прием положен в основу регенерации х емосорбентов в циклических системах газоочистки. Хемосорбция в особен ности применима для тонкой очистки газов при сравнительно небольшой на чальной концентрации примесей. 3. Метод адсорбции - основан на улавливании вредных газовых примесей поверхностью твердых тел, высоко пористых материалов, обладающих развитой удельной поверхностью. Адсорбционные методы применяют для различных технологических целей - разделение парогазовых смесей на компоненты с выделени ем фракций, осушка газов и для санитарной очистки газовых выхлопов. В пос леднее время адсорбционные методы выходят на первый план как надежное с редство защиты атмосферы от токсичных газообразных веществ, обеспечив ающее возможность концентрирования и утилизации этих веществ. Промышленные адсорбенты, чаще всего применяемые в газоочистке, - это активированный уго ль, силикагель, алюмогель, природные и синтетические цеолиты (молекулярн ые сита). Основные требования к промышленным сорбентам - высокая поглотительная сп особность, избирательность действия (селективность), термическая устой чивость, длительная служба без изменения структуры и свойств поверхнос ти, возможность легкой регенерации. Чаще всего для санитарной очистки га зов применяют активный уголь благодаря его высокой поглотительной спо собности и легкости регенерации. Известны различные конструкции адсорбентов (вертикальн ые, используемые при малых расходах, горизонтальные, при больших расхода х, кольцевые). Очистку газа осуществляют через неподвижные слои адсорбен та и движущиеся слои. Очищаемый газ проходит адсорбер со скоростью 0,05-0,3 м/с. После очистки ад сорбер переключается на регенерацию. Адсорбционная установка, состоящ ая из нескольких реакторов, работает в целом непрерывно, так как одновре менно одни реакторы находятся на стадии очистки, а другие - на стадиях регенерации, ох лаждения и др. Реген ерацию проводят нагреванием, например выжиганием органических веществ, пропусканием острого или перегретого пара, воздуха, инертного газа (азо та). Иногда адсорбент, потерявший активность (экранированный пылью, смол ой), полностью заменяют. Наиболее перспективны непрерывные циклические процессы адсорбцион ной очистки газов в реакторах с движущимся или взвешенным слоем адсорбе нта, которые характеризуются высокими скоростями газового потока (на по рядок выше, чем в периодических реакторах), высокой производительностью по газу и интенсивностью работы. Общие достоинства адсорбционных методов очистки газов: 1) глубокая очистка газов от токсичных примесей; 2) сравнительная ле гкость регенерации этих примесей с превращением их в товарный продукт и ли возвратом в производство; таким образом осуществляется принцип безо тходной технологии. Адсорбционный метод особенно рационален для удале ния токсических примесей (органических соединений, паров ртути и др.), сод ержащихся в малых концентрациях, т. е. как завершающий этап санитарной оч истки отходящих газов. Недостатки большинства адсорбционных установок - периодичность 4. Метод каталитического окисления – основан на удалении примес ей из очищаемого газа в присутствии катализаторов. Действие катализаторов проявляется в промежуточном химическом взаимодействии катализатора с реагирующими веществами, в р езультате чего образуется промежуточные соединения. В качестве катализаторов применяют металлы и их соединения (оксиды меди, марганца и др.) Катализаторы имеют вид шаров, к олец или другую форму. Особенно широко этот метод используется для очист ки выхлопных газов ДВС. В результате каталитических реакций примеси, находящиес я в газе, превращаются в другие соединения, т. е. в отличие от рассмотренны х методов примеси не извлекаются из газа, а трансформируются в безвред ные соединения, присутстви е которых допустимо в выхлопном газе, либо в соединения, ле гко удаляемые из газового потока. Если образовавшиеся вещества подлежа т удалению, то тре буются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоки х температурах и обычном давлении, а также при весьма малых начальных ко нцентрациях примесей. Каталитические методы позволяют утилизировать р еакционную теплоту, т.е. создавать энерготехнологические системы. Устан овки каталитической очистки просты в эксплуатации и ма логабаритны. Недостаток многих процессов каталитической очистки - образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбц ия), что усложняет установку и снижает общий экономический эффект. 5.Термический метод заключается в очистке газов перед выбросом в атмосферу путем высокотемпературного дожигания. Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителе й или оксида углерода. Простейший метод - факельное сжигание - возможен, когда концентра ция горючих загрязнителей близка к нижнему пределу воспламенения. В это м случае примеси служат топливом, температура процесса 750- 900 °С и теплоту горения прим есей можно утилизировать. Когда концентрация горючих примесей меньше нижнего предела воспламене ния, то необходимо подводить некоторое количество теплоты извне. Чаще вс его теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу. Такие энерготехнологические схемы применяют при достаточ но высоком содержании горючих примесей, иначе возрастает расход добавл яемого горючего газа. Рассеивание пылегазовых выбросов в атмосферу. При любом способе очис тке, часть пыли и газов остается в воздухе, выбрасываемом в атмосферу. Рас сеивание газовых выбросов используют для снижения опасных концентраци й примесей до уровня соответствующего ПДК. Используют различные технол огические средства для осуществления процесса рассеивания: трубы, вент иляционные устройства. На процессы рассеивания выбросов существенное влияние оказывает состо яние атмосферы, расположение предприятий и источников выбросов, характ ер местности и т. д. Горизонтальное перемещение примесей определяется в основном скоростью ветра, а вертикальное – распределением температур в вертикальном направлении. При распределении концентрации вредных веществ в атмосфере над факело м организованного высокого источника выброса выделяют 3 зоны загрязнен ия атмосферы: Рис. 1. Переброс факела выбросов, характеризующийся относительно невысоким с одержанием вредных веществ в приземном слое атмосферы. 2. Зона задымления с максимальным содержанием вредных веществ и постепен ное снижение уровня загрязнения. Эта зона является наиболее опасной для населения. Размеры этой зоны в зависимости от метеорологических услови й находятся в пределах 10-49 высоты трубы. 3. Зона постепенного сниж ения уровня загрязнения. При невозможности достигнуть ПДК очисткой иногда при меняют многократное разбавление токсичных веществ или выброс газов че рез высокие дымовые трубы для рассеивания примесей в верхних слоях атмо сферы. Теоретическое определение концентрации примесей в нижних слоях атмосферы в зависимости от высоты трубы и других факторов связано с зако нами турбулентной диффузии в атмосфере и пока разработано не полностью. Высоту трубы, необходимую, чтобы обеспечить ПДК токсичных веществ в нижн их слоях атмосферы, на уровне дыхания, определяют по приближенным формул ам, например: ПДВ = где ПДВ - предельно допустимый выброс вредных примесей в атмосферу, обеспечивающий концен трацию этих веществ в приземном слое воздуха не выше ПДК, г/с; Н - высота трубы, м; V - объем газового выброса, м^с; ∆ t - разность между температурами газового выброса и окружаю щего воздуха, °С; А - коэффициент, определяющий условия вертикального и горизонтального рас сеив ания вредных веществ в воздухе; F - безразмерный к оэффициент, учи тывающий скорость седиментации вредных веществ в атмос фере; т - коэффициент, учитывающий условия выхода газа из устья тр убы, его определяют графически или приближенно по формуле: Метод достижения ПДК с помощью «высоких труб» служит лишь паллиативом, т ак как не предохраняет атмосферу, а лишь переносит загрязнения из одного района в другие. Устройство санитарно-защитных зон Санитарно-з ащитная зона - это полоса, отделяющая источники промышленного загрязнен ия от жилых или общественных зданий для защиты населения от влияния вред ных факторов производства. Ширину санитарно-защитных зон устанавливают в зависимости от класса пр оизводства, степени вредности и количества, выделенных в атмосферу веще ств, и принимают равной от 50 до 1000 м. Санитарно-защитная зона должна быть благоустроена и озеленена. Различают 3 типа зон: Круговые, при полном окружении предприятия жилой застройкой; Секторные, при частичном окружении предприятия жилой застройкой и прим ыкания завода к естественной природной преграде. Трапециидальные, при отрыве предприятия от селитебной зоны. Устройство са н-защитных зон – вспомогательное средство защиты, так как очень дорогос тоящее мероприятие, это увеличение протяженности дорог, коммуникаций и т.д. Архитектур но-планировочные мероприятия включают правильное взаимное размещение источников выброса в населенных пунктах с учетом направления ветра, выб ор под застройку промышленного предприятия ровного возвышенного места, хорошо продуваемого ветрами, сооружение автомобильных дорог в обход на селенных пунктов и др.

Загрязнение атмосферы - это привнесение в воздух не характерных для него химических, физических и биологических веществ или изменение их естественной концентрации. В условиях активного техногенеза эта проблема приобрела чрезвычайную остроту и вызвала необходимость разработки комплекса мероприятий по снижению ее разностороннего негативного влияния.

В настоящее время можно выделить следующие группы мероприятий, направленных на предупреждение загрязнения атмосферного воздуха: технологические, планировочные и санитарно-технические. В качестве особой группы следует отметить меры правового и экономического характера, которые будут рассмотрены в гл. 10.

Технологические мероприятия, направленные прежде всего на реализацию одного из принципов рационального природопользования, состоящего в экологизации производства. Это означает уподобление производственных процессов, т.е. ресурсных циклов, естественным замкнутым круговоротам веществ в биосфере. Основу экологизации составляют разработка и внедрение малоотходных, энерго- и ресурсосберегающих технологий. Собственно безотходная технология в принципе невозможна в силу закона сохранения вещества. Разумеется, в природных биогеохимических циклах часть вещества также постоянно исключается из кругооборота, однако между этими процессами и ресурсными циклами есть принципиальная разница: в природе вещество не загрязняет среду и уходит не в отходы, а в запас.

К этой группе можно отнести также замену вредных веществ на производстве менее вредными или безвредными, очистку сырья от вредных примесей (десульфиризация топлива перед его сжиганием), замену сухих способов переработки пылящих материалов мокрыми, замену пламенного нагрева электрическим, герметизацию процессов, использование гидро- и пневмотранспорта при транспортировке пылящих материалов, замена прерывистых процессов непрерывными.

В группу планировочных мероприятий входит комплекс приемов, включающих учет розы ветров, зонирование территории города, организацию санитарно-защитных зон, озеленение населенных мест, планировку жилых районов.

Обычно промышленные зоны размещают на хорошо проветриваемых территориях города подветренно по отношению к жилым районам. Учитывают не только среднегодовую розу ветров, но и сезонные, а также скорости ветров отдельных румбов.

Известна экранирующая функция здания, в связи с чем получает развитие зонирование застройки кварталов, граничащих с магистральными улицами. Ближайшую к магистрали зону рекомендуется застраивать зданиями коммунально-бытового назначения, следующую - малоэтажными постройками, третью зону - зданиями повышенной этажности, а четвертую - детскими, лечебными учреждениями, т.е. застройкой с повышенными требованиями к качеству воздуха. Для борьбы с загрязнением воздуха жилых кварталов отработавшими газами автотранспорта имеет значение и тип застройки. Замкнутые приемы застройки целесообразно применять только в городах, где преобладают ветры больших скоростей (выше 5 м/с). Также большое значение в снижении загрязнения воздуха населенных мест имеют внутриквартальные зеленые насаждения и озеленение магистральных улиц.

В случаях, когда экологические и гигиенические показатели превышают нормативы, появляется необходимость в санитарно-технических мероприятиях :, состоящих во включении в систему удаления технологических и вентиляционных выбросов аппаратов для их очистки от примесей .

Аппараты очистки выбросов в атмосферу делятся: на пылеуловители (сухие, мокрые, фильтры и т.д.); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорбционные, адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твердых примесей, многоступенчатые пылеуловители). Работа таких аппаратов характеризуется рядом параметров, основными из которых являются эффективность очистки, гидравлическое сопротивление и потребляемая мощность.

Эффективность очистки

где с вх и с вых - массовые концентрации примесей в газе соответственно до и после аппарата.

В ряде случаев для пылей используется понятие фракционной эффективности очистки:

где с вх j и с вых, - массовые концентрации i-Pi фракции пыли соответственно до и после пылеуловителя.

Для оценки эффективности процесса очистки также используют коэффициент проскока веществ К через аппарат очистки:

Как следует из формул (5.2) и (5.3), коэффициент проскока и эффективность очистки связаны соотношением К = 1 - г.

Гидравлическое сопротивление аппаратов очистки Ар определяют как разность давлений воздушного потока на входе аппарата р вх и выходе /; вых из него. Значение Ар находят экспериментально или рассчитывают по формуле

где?, - коэффициент гидравлического сопротивления аппарата; р и W - плотность и скорость воздуха соответственно в расчетном сечении аппарата.

В процессе очистки гидравлическое сопротивление аппарата увеличивается, поэтому по достижении некоторого регламентированного его значения процесс очистки нужно прекратить и провести регенерацию или замену аппарата.

Мощность N побудителя движения воздуха определяется гидравлическим сопротивлением и объемным расходом Q очищаемого газа:

где k - коэффициент запаса мощности, обычно k = 1,1 -2- 1,15; г|м - КПД передачи мощности от электродвигателя к вентилятору, обычно ц м = = 0,92 0,95; г| в - КПД вентилятора, обычно г| в = 0,65 -2- 0,8.

Номенклатура аппаратов для очистки воздуха от примесей весьма обширна, что объясняется многообразием и сложностью современных технологий. Заслуженное признание среди устройств очистки воздуха от твердых частиц получили сухие пылеуловители - циклоны (рис. 5.2) различных типов (цилиндрические и конические). Загрязненный воздух вводится в циклон через патрубок 2 по касательной к внутренней поверхности корпуса 1 и совершает вращательно-поступательное движение вдоль корпуса к бункеру 4. Под действием центробежной силы частицы пыли образуют на стенке циклона слой, который вместе с частью воздуха попадает в бункер. Освободившись от пыли, образовавшийся вихрь воздуха выходит из бункера и покидает циклон через выходную трубу 3.

Рис. 5.2.

Для очистки больших масс применяют батарейные циклоны , состоящие из большого числа параллельно установленных циклонных элементов. Конструктивно они объединяются в один корпус и имеют общий подвод и отвод газа. Опыт эксплуатации батарейных циклонов показал, что эффективность очистки у таких циклонов несколько ниже эффективности отдельных элементов из-за перетока газов между циклонными элементами.

Для тонкой очистки воздуха от частиц и капельной жидкости применяют различные фильтры. Процесс фильтрования состоит в задержании частиц примесей на пористых перегородках при движении через них дисперсных сред (рис. 5.3).


Рис . 53.

Фильтр представляет собой корпус 1 , разделенный пористой перегородкой (фильтроэлементом) 2 на две полости. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэле- мента. Частицы примесей оседают па входной части пористой перегородки, образуя на поверхности перегородки слой 3> и задерживаются в порах. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки фильтра и перепад давления на фильтроэлементе. Осаждение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузного, инерционного и гравитационного эффектов.

Классификация фильтров производится по различным признакам: типу фильтроэлемента, конструкции фильтра и его назначению, очистке и др.

По типу фильтроэлемента они бывают: с зернистыми слоями (неподвижные, свободно насыпанными, псевдоожиженными); с гибкими пористыми перегородками (ткани, войлоки, волокнистые маты, губчатая резина, пенополиуретан и др.); с полужесткими пористыми перегородками (вязаные и тканые сетки, прессованные спирали и др.); с жесткими пористыми перегородками (пористая керамика, пористые металлы и др.).

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки воздуха от взвешенных в нем частиц пыли и тумана. Этот процесс основан на ионизации воздуха, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах.

Аппараты мокрой очистки газов - мокрые пылеуловители - имеют широкое распространение, так как характеризуются высокой эффективностью очистки от мелкодисперсных пылей с d 4 > 0,3 мкм, а также возможностью очистки от пыли нагретого воздуха. Область их применения ограничивается рядом недостатков: образование в процессе очистки шлама, что требует специальных систем для его переработки; вынос влаги в атмосферу и образование отложений в отводящих газоходах при охлаждении воздуха до температуры точки росы; необходимость создания оборотных систем подачи воды в пылеуловитель.

Аппараты мокрой очистки работают по принципу осаждения частиц пыли на поверхность либо капель, либо пленки жидкости под действием сил инерции и броуновского движения.

Среди аппаратов мокрой очистки с осаждением частиц пыли на поверхность капель на практике наиболее применимы скрубберы Вентури (рис. 5.4). Основная часть скруббера - сопло Вентури 2. В его конфузор- ную часть подводится запыленный поток воздуха и через центробежные форсунки 1 - жидкость на орошение. В копфузориой части сопла происходит разгон воздуха от входной скорости (W r = 15 -s- 20 м/с) до скорости в узком сечении сопла 80-200 м/с и более. Процесс осаждения пыли на капли жидкости обусловлен массой жидкости, развитой поверхностью капель и высокой относительной скоростью частиц жидкости и пыли в кон- фузорной части сопла. Эффективность очистки в значительной степени зависит от равномерности распределения жидкости но сечению конфузор- ной части сопла. В диффузорной части сопла поток тормозится до скорости 15-20 м/с и подается в каплеуловитель 3, выполняемый обычно в виде прямоточного циклона.


Рис. 5.4.

Скрубберы Вентури обеспечивают высокую эффективность очистки от аэрозолей при начальной концентрации примесей до 100 г/м 3 . Они также широко используются в системах очистки воздуха от туманов, где их эффективность достигает 0,999, что вполне сравнимо с высокоэффективными фильтрами.

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры - туманоуловители , принцип действия которых основан на осаждении капель на поверхности пор с последующим стеканием жидкости но волокнам в нижнюю часть тумано- уловителя. Осаждение капель жидкости происходит под действием броуновского движения или инерционного механизма отделения частиц загрязнителя от газовой фазы на фильтроэлементах.

Абсорбция - очистка выбросов от газов и паров, основанная на поглощении последних жидкостью в специальных аппаратах - абсорберах. Важнейшим условием применимости метода является растворимость паров или газов в абсорбенте, оцениваемая его абсорбционной способностью. В большинстве случаев в качестве абсорбента применяют воду, однако в некоторых случаях приходится прибегать к специальным жидкостям достаточно сложного состава. Поглощение газов и парообразных примесей происходит в процессе встречного движения загрязненного воздуха снизу и абсорбента, поступающего сверху через разбрызгиватель 2 на насадки 1 (рис. 5.5). Конструктивно абсорберы реализуются в виде насадочных башен, барботажно-пенных, распыливающих и других аппаратов.


Рис. 5.5. Схема насадочной башни:

1 - насадка; 2 - разбрызгиватель

Хемосорбция основана на поглощении газов и паров жидкими или твердыми поглотителями с образованием малорастворимых или малолетучих химических соединений. Протекающие при этом реакции в основном являются экзотермическими и обратимыми, поэтому при повышении температуры раствора образующееся химическое соединение разлагается с выделением исходных элементов.

Поглотительная способность хемосорбента почти не зависит от давления, поэтому хемосорбция более выгодна при небольшой концентрации вредностей в отходящих газах.

Основными аппаратами для реализации процесса являются насадочные башни, барботажно-пенные аппараты, скрубберы Вентури и т.п. Хемосорбция - один из распространенных методов очистки загрязненного воздуха от оксидов азота (эффективность очистки от оксидов азота 0,17-0,86) и паров кислот (эффективность очистки 0,95).

Адсорбция основана на способности некоторых тонкодисперсных твердых тел (адсорбентов ) селективно извлекать и концентрировать на своей поверхности отдельные компоненты газовой смеси. В качестве адсорбентов, или поглотителей, применяют вещества, имеющие большую площадь поверхности на единицу массы (активированные угли, а также простые и комплексные оксиды - активированный глинозем, силикагель, активированный оксид алюминия, синтетические цеолиты или молекулярные сита).

Адсорберы применяют для очистки воздуха от органических паров, удаления неприятных запахов и газообразных примесей, содержащихся в незначительных количествах в промышленных выбросах, а также летучих растворителей и целого ряда других газов.

Конструктивно адсорберы выполняют в виде емкостей, заполненных пористым адсорбентом, через который фильтруется поток очищаемого газа. Патроны с адсорбентом нашли широкое применение в респираторах и противогазах.

Термическая нейтрализация основана на способности горючих газов и паров в составе вентиляционных или технологических выбросов сгорать с образованием менее токсичных веществ. Для этого метода используют нейтрализаторы, использующие различные схемы термической нейтрализации: прямое сжигание; термическое окисление; каталитическое дожигание.

Прямое сжигание используют в тех случаях, когда очищаемые газы обладают значительной энергией, достаточной для поддержания горения (факельное сжигание горючих отходов в нефтехимии).

Термическое окисление находит применение в тех случаях, когда очищаемые газы имеют высокую температуру, но не содержат достаточно кислорода или когда концентрация горючих веществ незначительна и недостаточна для поддержания пламени.

В первом случае процесс термического окисления проводят в камере с подачей свежего воздуха (дожигание оксида углерода и углеводородов), а во втором - при подаче дополнительно природного газа.

Каталитическое дожигание используют для превращения токсичных компонентов, содержащихся в отходящих газах, в нетоксичные или менее токсичные путем их контакта с катализаторами. Для реализации процесса необходимо, кроме применения катализаторов, поддержание таких параметров газового потока, как температура и скорость газов. В качестве катализаторов используют платину, палладий, медь и др.

Каталитические нейтрализаторы применяют для обезвреживания оксида углерода, летучих углеводородов, растворителей, отработавших газов и т.п.

Для высокоэффективной очистки многокомпонентных выбросов (при одновременной очистке от твердых и газообразных примесей, при очистке от твердых примесей и капельной жидкости и т.п.) необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки.

В системе последовательно соединенных аппаратов общая эффективность очистки г) определяется выражением

где гр, г| 2 ,Г| п - эффективность очистки 1, 2 и п -го аппаратов.

Пассивные методы делятся на:

1) ограничение выбросов:

Санитарно-защитная зона- это полоса земли, которая отделяет предприятие от жилой застройки. Ширина зависит от мощности, объема выбросов, концентрации выбросов, создаваемого шума. Территория санитарно-защитных зон должна быть обязательно озеленена (>

Методы обеспыливания воздуха. Основные технические показатели пылеуловителей.

Для очистки от пыли используют сухие и мокрые пылеуловители, а также сухие и мокрые электрофильтры. Выбор метода и аппарата для улавливания аэрозолей зависит от дисперсного состава (размера частиц, находящихся в воздухе), эффективности, расхода или производительности аппарата.

Эффективность улавливания или степень очистки - выражается количеством уловленного материала, поступившего в газоочистной аппарат с газовым потоком за определенный период времени. (G 1 , G 2 - массовый расход (концентрация) частиц пыли, содержащихся в газе на входе и на выходе из аппарата [кг/ч]).

В основе работы сухих аппаратов лежат гравитационные, инерционные и центробежные механизмы осаждения или фильтрационные механизмы. К основным аппаратам сухой очистки относятся: пылеосадительные камеры, циклоны, фильтры, электрофильтры.

«+»- температура выбросов после очистки достигает до 50()°С (есть возможность утилизации):

При выбросе горячих газов улучшается их рассеивание в атмосфере;

Отсутствие потребления воды и образования сточных вод;

Возможность возвратить уловленную пыль обратно в производство.

«-» - возможная конденсация паров на стенках аппарата, что приводит к коррозии стенок и образование трудно улавливаемых отложений пыли;

Трудности с удалением уловленной пыли (возможность вторичного загрязнения воздуха).

Центробежные пылеуловители.

К ним относятся различные типы циклонов и вихревые пылеуловители.

Циклон . Получили наибольшее распространение в промышленности (для улавливания золы на ТЭС, на деревообрабат-их заводах). η=90%, d>10мкм.

«+» -отсутствие движущихся частей в аппарате;

Надежность работы при высоких температурах (до 500°C)-при работе с более высокими °t изготовляются из спец. материалов;

Возможность улавливания абразивных материалов (внутренняя поверхность циклона обрабатывается спец.покрытием);

Постоянное гидравлическое сопротивление;

Хорошая работа при высоких давлениях газа;

Простота изготовления.

«-» -низкая эффективность при улавливании частиц меньше 5мкм;

Высокое гидравлическое сопротивление (1,2-1,5кПа).

1-входной патрубок

В циклоне происходит спиралеобразное закручивание потока, в результате чего частицы отбрасываются к стенкам и постепенно опускаются в бункер 2. ОВ через выходное отверстие 3 выбрасывается в атмосферу. Частицы аэрозоли движутся вдоль результирующей силы Fp и прижимаются к внутренним поверхностям корпуса (трубы) и по этой поверхности скользят вниз и попадают в пылесборник. Периодически нижняя часть пылесборника открывается и таким образом удаляется пыль, на это время заслонку на патрубке закрывают. Эффективность улавливания частиц пыли в циклоне прямо пропорциональна скорости газа в степени ½ и обратно пропорциональна диаметру аппарата.

Для увеличения центробежной силы Fц необходимо (для повышения эффективности):

Увеличивать скорость пылевоздушной струи;

Уменьшать диаметр циклона.

Из практики известно, что скорость струи должна быть от 15 до 18 м/с. Отношение высоты циклона к D д.б. 2/3.

При больших расходах очищенных газов применяются групповые/батарейные циклоны – это позволяет не увеличивать D циклона. Запыленный газ входит в общий коллектор и распределяется по циклонам (работают параллельно).

Вихревые пылеуловители. Η<90%, d>2мкм.

Основным отличием от циклонов является наличие вспомогательного закручив-ся потока. В аппарате соплового типа запыленный газовый поток подается снизу аппарата и закручивается при помощи лопаточного завихрителя. Закрученный газовый поток движется вверх, при этом подвергаясь действию нескольких струй вторичного газа. Вторичный газ подается из тангенциально расположенных сопел вверху аппарата. Под действием центробежных сил частицы отбрасываются к периферии корпуса аппарата, а оттуда в создаваемый струями поток вторичного газа, направляющий их вниз в кольцевое межтрубное пространство. Кольцевое межтрубное пространство вокруг входного патрубка оснащено подпорной шайбой, обеспечивающей спуск пыли в бункер.

1-камера; 2-выходной патрубок; 3-сопла;

4-лопаточный завихритель; 5-входной патрубок; 6-подпорная шайба;

7-пылевой бункер.

Электрофильтры.

Электрофильтр - наиболее современный пылеулавливающий аппарат. η=99-99,5%, d=0,01-100мкм. температура очищ-го газа до 450°C.

В электрофильтре используется высоковольтное электростатическое поле. Напряжение на электродах до 50 кВ. Частицы проходят через 2 зоны. В 1-й зоне частица приобретает Эл. потенциал (заряжается), во 2-й зоне заряженная пыль движется к противоположенному электростатическому заряду и оседает на нем. Поэтому для очистки воздуха от пыли используется 3 вида сил: сила тяжести; сила воздушного напора и электростатическая сила.

По конструкции они м.б. вертикальными игоризонтальными.

1 – коронирующий электрод

2 – осадительный электрод

3 – бункер

4 – источник напряжения

При подаче высоковольтного напряжения между коронирующим и осадительным электродами создается электростатическое поле высокой напряженности. При поступлении загрязненного воздуха через патрубок образуется ламинарная струя (поток), которая движется ветрикально вверх через электростатическое поле. При этом на частицу действуют силы: G, Fh, и Рэл.ст.. При этом Fh превышает G на несколько процентов. При такой схеме сил частица отклоняется от вертикальной оси и движется в сторону осадительного электрода и прилипает к внутренней поверхности трубы. Происходит передача отрицательного заряда частицам пыли и их осаждение на осадительных электродах. Регенерация фильтра осуществляется встряхиванием.

«-» большой расход энергии (0,36-1,8 МДж на 1000 м 3 газа).

Чем выше напряженность поля и ниже скорость газа в аппарате, тем лучше улавливание пыли.

Процеживание и отстаивание.

Процеживание - это процесс пропускания сточных вод через решётки и сита перед более тонкой очисткой

Решётки улавливают примеси не менее 10-20 мм, решётки периодически очищают;

Эффективность работы не более 70%

Процеживание используется только для предварительной очистки СВ

В некоторых областях используют сита с размером ячеек до 1 мм, которые позволяют удалять вещества 0,5-1 мм.

С помощью расчёта осуществляется подбор решётки, и определяются потери напора в ней.

Отстаивание - это осаждение грубодисперсных примесей под действием силы тяжести.

Используются:

1) песколовки, применяются для удаления минеральных частиц и песка (0,15-0,25 мм). Песколовка - это резервуар с тропецеидальным или треугольным основанием (<0,3м/с, эффективность не более 95%).

Бывают: - вертикальные (движение снизу вверх); - горизонтальные; -аэрируемые.

Н = 0,25 – 2 м

v = 0,15 -0,3 м/с

В = 3 – 4,5 м

Длина рабочей части:

L = (1000*k s *H s *υ s)/ u s, где:

H s -расчётная глубина песколовки, k s – к-т, принимаемый в зависимости от типа песколовки, υ s – скорость движения воды в песколовке, u s – гмдравлическая крупность (14 – 24 мм/с)

2) отстойники.

По конструктивному исполнению: горизонтальные, вертикальные, радиальные, трубчатые и с наклонными пластинами. По назначению: первичные, - вторичные.

Горизонтальные – прямоугольные резервуары, имеющие 2 и более одновременно работающих отделения.

1 – входной латок;

2 – выходной лоток;

3 – камера отстаивания;

4 –лоток для удаления всплывших примесей.

Q – более 15 000 м 3 / сут

Н =1,5 – 4 м, L = 8 -27м, В = 3-6 м, v =0,01 м/с.

Вертикальные – круглые в плане резервуары, диаметром 4, 6, 9м с коническим днищем. Сточную воду подводят по центру к трубе, и после поступления внутрь она движется снизу вверх.

1- центральная труба;

2- жёлоб для отверстия;

3- цилиндрическая часть;

4- коническая часть.

Q – менее 20000 м 3 / сут;

Диаметр – 4, 6, 9; высота- 4 -5 м, скорость – 0,5 – 0,6 м/с.

Радиальные – круглые в плане резервуары, вода поступает через центр трубы и движется от центра к периферии.

2- распределительное устройство;

3- скребковый механизм;

Q – более 20000 м 3 / сут;

Высота – 1,5–5 м, диаметр – 16 – 60 м.

Расчёт отстойника производиться по кинетике выпадения взвешенных веществ с учётом необходимого эффекта осветления. Расчётом определяется гидравлическая крупность, по которой рассчитываются параметры отстойника.

Увеличить эффективность осаждения можно:

Увеличив размеры частиц коагуляцией; - уменьшая вязкость воды (например, нагреванием); - увеличив площадь отстаивания.

3) нефтеловушка

1- корпус;

2- слой нефти;

3- труба для сбора нефти (жира);

4- перегородка для удержания всплывших нефтепродуктов;

5- приямок для осадков

Степень очистки менее 70%. Для увеличения эффективности снизу подают воздух. Рассчитываются как отстойники с учётом гидравлической крупности всплывающих частиц.

Осветлители, применяются для очистки природных вод и для предварительного осветления СВ. в осветлителях создается взвешенный слой осадка через который фильтруются СВ.

Процесс отстаивания используется и для очистки частиц, имеющих плотность меньше, чем плотность воды, такие частицы всплывают и убираются с поверхности отстойника (жироловушки и нефтеловушки). Эффективность для нефти 96-98% для жира не более 70%..

Методы защиты атмосферы, их классификация.

Активные - они предусматривают экологизацию технологических процессов, т.е. создание безотходных технологий, создание замкнутых технологических циклов (редко).

Пассивные методы делятся на:

1) ограничение выбросов:

Усовершенствование топлива и замена другим видом;

Обеспечение более полного сгорания топлива;

Предварительная очистка сырья от летучих примесей;

Повышение роли безотходных источников энергии (АЭС, солнечная, ветровая).

2) рассредоточение, локализация и рассеивание выбросов

Выбор производится на стадии проектирования, строительства объекта выброса;

Нельзя строить в местах застоя воздуха;

На определенном расстоянии от жилых зон с учетом розы ветров;

Д. б. минимальное количество дней в году, в которые ветер дует от предприятия к городу;

Расположение производственных и жилых зданий должны способствовать сквозному проветриванию;

При компоновке зданий около магистрали следует: в центре больницы, дет. сады...

Локализация - это устройство вытяжных шкафов для удаления ЗВ. Централизация - несколько мелких источников объединяют в один крупный источник для наиболее эффективной работы очистных сооружений (низкая стоимость очистки воздуха). Рассеивание - выброс ЗВ в верхний слой атмосферы через трубы и дальнейшее его разбавление с чистым (наиболее опасен из низких труб). Рассредоточение – расположение предприятий на территории с учетом расположения города, розы ветров (на стадии проектировния).

3) устройство санитарно-защитных зон:

Для снижения воздействия предприятий на окружающую среду вокруг них делаются санитарно-защитные зоны;

Санитарно-защитная зона- это полоса земли, которая отделяет предприятие от жилой застройки. Ширина зависит от мощности, объема выбросов, концентрации выбросов, создаваемого шума. Территория санитарно-защитных зон должна быть обязательно озеленена (>=60% от площади) и благоустроена (кроме больниц, парков, стадионов...)

4) очистка выбросов - это улавливание ЗВ из отходящих газов.

Все выбросы делятся на парогазовые и аэрозольные выбросы, на производстве всегда производится очистка от пыли затем от газов.

Очистка от пыли: -сухие методы (пылеосадительные камеры, пылеуловители (инерционные, динамические, вихревые), циклоны, фильтры (волокнистые, тканевые, зернистые, керамические)); -мокрые методы (газопромыватели (полые, насадочные, тарельчатые, ударно-инерционные, центробежные, механические, скоростные)); -электрические методы (сухие и мокрые электрофильтры).

Очистка от туманов и брызг: - фильтры туманоуловители; - сетчатые брызгоуловители.



Понравилась статья? Поделитесь с друзьями!