Напряженная и ненапряженная арматура. Преднапряженные железобетонные конструкции

Сегодня многие продавцы продают ЖБИ изделия и подчеркивают, что они используют напряженную арматуру. Нередко встречаются такие термины, как «напрягаемая арматура» или «предварительно напряженная арматура». Так что же это такое? Как напрягают арматуру, зачем это нужно и в чем отличаются напрягаемая и ненапрягаемая арматура?

Все происходит в процессе создания ЖБИ изделия, когда арматуру только располагают в форме. Затем ее необходимо немного растянуть – это могут делать как домкратами, так и другими приспособлениями. Более эффективно получается использовать электричество: через арматуру пропускают очень большой ток, вследствие чего она нагревается и, следовательно, расширяется. Затем ее держат в таком состоянии достаточно долго, в течение всего цикла заливки и затвердевания бетона.

Натяжение напрягаемой арматуры

После чего предварительно напряженную арматуру отпускают, то есть снимают нагрузку: выключают ток или просто снимают напряжение домкратов. Моментально металл сжимается, но не до конца, так как ему мешает бетон. В результате на границе сред бетон и металл создается напряжение: металл хочет сократиться и частично делает это, а бетон пытается вернуть свое положение и растянуть металл снова.

Это позволяет ЖБИ изделиям иметь большую прочность на изгиб. При большом поперечном давлении бетон, который изначально находится в небольшом напряжении, наоборот, ослабевает, так как ему частично удается арматуру растянуть на изгибе, и приобретает необходимую марочную прочность.

Следует сказать, что предварительно напрягаемая арматура широко используется в огромном количестве железобетонных изделий, и сейчас ЖБИ без такого «скелета» представляют собой откровенное меньшинство.

Напрягаемая арматура отличается от прутковой арматуры своей значительно более высокой прочностью. Она составляет от St 835/1030 до St 1570/1770. Напрягаемая арматура изготавливается в виде проволоки и стержней диаметром от 5 до 36 мм. Вся напрягаемая арматура требует допуска Стройнадзора.

Проволока и стержни имеют круглое сечение, поверхность может быть гладкой, с резьбовидными ребрами или профилированной. Напрягаемая проволока может применяться в отдельности или связанной в пряди канатов. Пряди канатов изготавливаются из 2, 3, 5 или 7 напрягаемых проволок с максимальным диаметром 15,7мм. Приэтом проволоки сплетаются друг с другом в канат. Пряди поставляются в прутках или в бухтах. Отдельные проволоки могут быть обычными, оцинкованными или в пластмассовой (ПЭ) оплетке. Внутри полиэтиленовой оплетки (ПЭ) можно поместить защитный слой от коррозии в форме слоя жира или масла. При применении таких прядей можно исключить запрессовку каналов цементным раствором.

Бетон это достаточно прочный и стойкий строительный материал, но и он имеет ряд недостатков и слабых сторон. А чтобы бетон был лишен таких минусов и стал более прочным и долговечным его усиливают арматурой. Арматура в железобетонной строительной конструкции может быть напрягаемой и ненапрягаемой, поперечной и продольной, также она бывает конструктивной, рабочей, монтажной или анкерной. Арматурные изделия в бетонной конструкции бывают двух основных видов, то есть в виде арматурной плоской сетки или в виде арматурного пространственного каркаса.

Напрягаемая арматура

При изготовлении железобетонного изделия применяется специальная напрягаемая арматура, которая отличается от прутковой обычной арматуры большей прочностью и стойкостью. Изготавливается такая арматура в виде специальной проволоки или стержня, который имеет диаметр от 5 мм до 36 мм. Арматура должна иметь обязательный допуск от Стройнадзора, так как напрягаемая арматура выполняет очень ответственную роль и от нее зависит прочность и долговечность всей конструкции. А именно напрягаемая арматура помогает бетону выдерживать достаточно сильные растягивающие нагрузки и для этого она натягивается различным методом.

Методы напряжения арматуры

Напряжение бетонной конструкции арматурой устраняет растягивающие эксплуатационные нагрузки. Существует ряд способов натяжения такой арматуры, при механическом способе натяжение осуществляется винтовым или гидравлическим домкратом. Также есть электротермический способ, при котором такое натяжение осуществляется воздействием электротока, благодаря которому арматура разогревается и затем удлиняется до требуемого размера. Третий способ натяжения это электротермомеханический, который совмещает в себе и электротермический и механический способы.

Где применяется напрягаемая арматура

Предварительно напряжённый бетон представляет собой основной материал для устройства перекрытий между этажами в высотном строительстве. Также напряженная арматура устраивается при возведении стен и колонн, расположенных в зоне повышенной сейсмоопасности и взрывоопасности. Используется она также при строительстве различных зданий и сооружений, подвергаемых повышенной различной нагрузке. Бетон с напряженной арматурой используется и при устройстве защитной оболочки ядерного реактора, а также активно применяется в судостроении и при строительстве мостов.

Технологии устройства бетона с напряженной арматурой

Существующие технологии устройства напряженной арматуры разделяются на два основных вида. Первый вид технологии заключается в натяжении на упоры, которое проводится еще до укладки бетонной смеси в опалубку. Вторая технология это натяжение арматуры на бетон и такое натяжение проводится уже после того как бетон уже уложен и набрал определенную прочность. При второй технологии арматура или стальной трос укладывается в специальном чехле в форму до процесса бетонирования, где чехол может быть в виде пластиковой или металлической гофрированной трубы.

Бетонная смесь


Технология армирования изделий предварительно напряженной арматурой


В обычных железобетонных конструкциях, испытывающих изгибающие и растягивающие напряжения, в период эксплуатации могут возникнуть трещины. Поэтому в растянутые зоны железобетонных конструкций устанавливается предварительно напряженная арматура. Это с одной стороны повышает трещиностойкость конструкций, а с другой стороны способствует существенному сокращению расхода арматурной стали.

Предварительное напряжение железобетонных конструкций можно осуществить несколькими способами: – передачи бетону предварительного напряжения арматуры путем непосредственного сцепления бетона с арматурой, натянутой до бетонирования на упоры; – сцеплением, обеспечиваемым раствором нагнетаемым в каналы, в которые укладывается арматура, после того как бетон наберет требуемую прочность; – без сцепления путем анкеровки концов арматурных элементов; – путем применения напрягающих бетонов, которые расширяясь в процессе твердения напрягают арматуру.

На заводах ЖБИ в основном используется первый способ. Второй и третий способ применяют при возведении массивных сборно-монтажных конструкций.

Способы натяжения арматуры следующие: – механический, с помощью натяжных машин или гидравлических домкратов; – электрический, при котором арматурные стержни нагревают электрическим током с целью получения определенного удлинения. Уложенные в таком состоянии в форму на упоры они при остывании укорачиваются и в них возникают необходимые натяжения; – электромеханический является совокупностью первых двух. Этот способ применяют преимущественно при армировании высокопрочной проволокой непрерывной навивкой при натяжении на затвердевший бетон изделия, например труб.

Для фиксации предварительно-напряженной арматуры используют анкеры и зажимы.

На стержневой напрягаемой арматуре выполняются концевые анкеры трех видов, которые даны на рис. 4.18.

Анкеры имеют различную конструкцию в зависимости от вида закрепления арматуры. Для закрепления проволочной арматуры в виде пучков применяются два типа анкеров: конический анкер с натяжением арматуры домкратом двойного действия (рис. 4.19); гильзовый анкер с натяжением арматуры стержневым домкратом.

Рис. 4.18. Анкеры одноразового пользования при натяжении стержневой арматуры: 1 – напрягаемый стержень; 2 – обжатая шайба; 3 -шайба толщиной 3-5 мм; 4 – высаженная головка; 5 – приваренные коротыши арматуры

Рис. 4.19. Конический анкер: а – разрез анкерного устройства; б – разрез пучка; в – колодка; г – коническая пробка; 1 – колодка; 2 – проволоки пучка; 3 – пробка; 4 – распределительная плита

Пучки с коническими анкерами собирают из 8-24 высокопрочных проволок, выправленных и нарезанных на правильно-отрезных автоматах. Длину проволок принимают на 25-30 см больше длины изделия.

Для получения пучка проволоки симметрично располагают вокруг спиралей диаметром 30-40 мм и закрепляют скрутками из отожженной проволоки, которые ставят на расстоянии не более 1 м.

Конический анкер состоит из колодки с коническим отверстием для пропуска пучка проволок и конусной полой пробки с диаметром основания от 32 до 55 мм, изготовленных из конструкционной стали марки 45 с закалкой в электрических печах. Боковая поверхность конусных пробок во избежание проскальзывания натянутых проволок имеет нарезку. Отверстие внутри пробки предназначается для нагнетания цементного раствора внутрь канала. Гильзо – стержневой анкер для пучка получается обжатием стальной гильзой проволок пучка вокруг стального профилированного стержня. Стержень заканчивается винтовой нарезкой для присоединения к домкрату и закрепления пучка после натяжения посредством гайки (рис. 4.20.).

Зажимы являются универсальными устройствами для многоразового применения для закрепления стержневой, проволочной и прядевой арматур.

В зависимости от числа одновременно закрепляемых проволок, стержней и прядей различают зажимы одиночные и групповые. Для закрепления одного элемента широко применяются различные цанговые зажимы (рис. 4.21). Принцип действия этого зажима основан на применении трех-клинового устройства, обеспечивающего большие силы трения от усилия натяжения арматуры. Эти зажимы просты и надежны в эксплуатации. Они выдерживают до 100 и более циклов работ.

Клиновые зажимы служат для закрепления прядевой арматуры. Ко-лодина делается закрытой с плоскими клиньями на одну или две пряди (рис. 4.22). Для стендов применяют групповые зажимы с волнистыми трещинами для закрепления высокопрочной проволоки в виде пакетов (до 28 штук). После укладки проволок между пластинами пакет обжимают в гидравлическом прессе с усилием до 80 т. и закрепляют клином или стопорными болтами (рис. 4.23).

Рис. 4.20. Пучковые анкеры: а – гильзовый; б – гильзово-стержневой; 1 – гайка; 2 – гильза; 3 – проволоки арматурного пучка; 4 – разделительное кольцо; 5 – часть стержня с кольцевой нарезкой; б – часть стержня с кольцевыми канавками

Рис. 4.21. Зажим цанговый: а – зажим в сборе; б – детали зажима; 1 – корпус; 2 – губки зажимные; 3 – толкатель; 4 – шайба; 5 – пружина; б – хвостик

Рис. 4.22. Клиновые зажимы для прядевой арматуры: а – для двух прядей; б – для одной пряди; 1 – клин; 2 – обойма; 3 – прядь

Рис. 4.23. Волновой зажим: 1 – корпус; 2 – рамки; 3 – пластины с волнистой поверхностью; 4 – клин; 5 – шпилька; 6 – рым

Механический способ натяжения заключается в растяжении арматуры осевой нагрузкой, создаваемой обычно гидравлическими или механическими домкратами, рычажными и грузовыми устройствами (типа лебедок), а также специальными машинами (при непрерывном армировании).

Натяжение арматуры на упоры формы и стендов может быть одиночным (каждый арматурный элемент натягивается отдельно) и групповым (одновременно натягиваются несколько элементов или вся напрягаемая арматура изделия) в зависимости от вида конструкции, расположения в ней натягиваемой арматуры, числа натягиваемых арматурных элементов, общего усилия их натяжения и наличия оборудования необходимой мощности. При концентрированном расположении арматуры по сечению изделия рекомендуется применять групповое натяжение арматуры.

Если при заготовке невозможно обеспечить требуемую точность длины арматурных элементов, до группового натяжения следует предварительно подтягивать каждый элемент усилием, не превышающим 10% проектного.

Натяжение арматуры на стендах рекомендуется производить в два этапа. На первом этапе арматуру натягивают с усилием, равным 40…50% заданного. Затем проверяют правильность расположения напрягаемой арматуры, устанавливают закладные детали, сварные арматурные сетки и каркасы и закрывают борта форм. На втором этапе арматуру натягивают до заданного проектного усилия с перетяжкой на 5… 10%, при которой арматуру выдерживают в течении 3-5 мин, после чего натяжение снижают до проектного.

Контролируемое напряжение должно соответствовать указанному в проекте. Контроль усилия натяжения должен выполняться по показаниям манометров гидравлических домкратов и одновременно по удлинению арматуры. Результаты измерения усилия натяжения по показаниям манометра и по удлинению арматуры, полученного расчетом для данного усилия, не должны отличаться более чем на 10%. При большем расхождении необходимо приостановить натяжение арматуры, выявить и устранить причину расхождения этих показателей.

При механическом натяжении канатной, проволочной и стержневой арматуры ее удлинение определяют по формуле:
AL = PL3 / Asp Es или AL = asp L3 / Es,
где asp – контролируемое напряжение, МПа,

Лекция № 3

МАТЕРИАЛЫ ДЛЯ ЖБК.

АРМАТУРА.

2. Виды и классы

Способ изготовления и форма поверхности определяет вид арматуры. Различают арматуру:

1. Стержневую: горячекатаную, термоупрочнённую и термомеханически упрочнённую;

    Проволочную: холоднотянутую обыкновенную и высокопрочную.

    По начальному напряженному состоянию: напрягаемую и ненапрягаемую.

Горячекатаная арматура – это стальная арматура в виде отдельных стержней круглого, эллиптического, квадратного и других сечений.

Предпочтение отдают круглому сечению, потому что такая арматура наиболее технологична в изготовлении и не имеет острых углов, врезающихся в бетон и способствующих образованию трещин. Класс такой арматуры обозначают буквой А и римской цифрой в СНиПе 2.03.01-84* «Бетонные и железобетонные конструкции» (чем больше цифра, тем выше прочность), в СП 52-01-2003 – обычными цифрами:

А-I(А 240) – гладкая;

А-II(А 300), А-III(А 400), А-IV(А600), А-V(А800),A-VI(А1000)– периодический профиль. Такая сталь не подвергается после проката упрочняющей термической обработке.

Ат-III(Ат 400), Ат-IV(Ат 600), Ат-V(Ат 800), Ат-VI(Ат 1000) – термически и термомеханически упрочнённая, т.е. подвергаемая после проката упрочняющей термической обработке;

А-IIIв (А 400в)– упрочнённая вытяжкой.

Холоднотянутая арматура – это стальная проволочная арматура. Обозначают буквой В от слова «волочение».

Вр-I(Вр500) – периодического профиля;

В-II– гладкая высокопрочная;

Вр-II– высокопрочная рифлёная;

К-7, К-19 – проволочные канаты соответственно семи- и девятнадцатипроволочные и др.

Арматура периодического профиля – это арматура, на поверхности которой имеются часто расположенные кольцевые выступы, обеспечивающие надёжное сцепление с бетоном без устройства анкерных крюков на концах стержней.

Рис. 3.3. Виды арматуры периодического профиля

а – стержневая класса А300;

б – стержневая класса А500

Ненапрягаемая арматура – арматура, укладываемая без предварительного натяжения (напряжения).

В качестве ненапрягаемой арматуры преимущественно применяют сталь классов А400, А-600C, Вр 500, А240, А300, допускается применение А-600.

Ненапрягаемая арматура классов А240, А300, А400, Вр500, A-600С– сваривают контактной и дуговой сваркой

Напрягаемая арматура - преимущество сталь классов Ат-800, Ат-1000 в элементах длиной до 12 м, допускается также сталь классов А-600 , А-800, А-1000; при большой длине – сталь классов К-7, К-19.

3. Стыкование ненапрягаемой арматуры

По способу производства стыки стержней делятся на сварные, несварные (внахлёстку) , по месту изготовления – заводские и монтажные.

Несварные стыки менее экономичны, поэтому их применяют только для стыкования термически упрочнённой стержневой арматуры.

В зависимости от вида арматуры и условий изготовления применяют разные виды сварных стыков:

Контактные;

Ванные в инвентарной форме;

Внахлёстку;

Тавровые и т.д.

Сварные стыки выполняются в соответствии с ГОСТ. Стыки с накладками и внахлёстку применяют, если не удаётся точно подогнать торцы стыкуемых стержней. Сварные стыки можно размещать в любом месте стержня, однако рабочие стержни не рекомендуют сваривать в зонах наибольших усилий. Стыки с накладками в местах им насыщения бетона арматурой, дабы не мешать бетонированию.

4. Арматурные изделия

1. Арматурные сетки (обычно с перпендикулярным расположением рабочих стержней).

2. Каркасы – плоские и пространственные.

Сварные плоские сетки изготавливают шириной до 3800мм с продольной и поперечной рабочей арматурой. Расстояние между осями продольных и поперечных стержней обычно принимают кратным 50 мм. Плоские каркасы применяют для армирования изгибаемых элементов. Продольные рабочие и монтажные стержни размещают с одной стороны поперечных стержней, так как это исключает трудоемкое переворачивание стержней при изготовлении каркасов. Допускается размещение рабочих стержней в два и более рядов, если это оправдано экономически. Пространственные каркасы собирают из плоских каркасов или сваривают целиком, что позволяет снизить трудоёмкость работ.

5. Деформативность.

Деформативность – это характеристика пластичности стали, определяет величину угла изгиба, ползучесть стали.

Удлинение стали при разрыве оценивают величиной равномерного относительного удлинения при разрыве (без учёта длины шейки) эталонного образца. Этой величиной характеризуется разрушение конструкции. Конструкции, армированные напрягаемой высокопрочной проволокой, могут терять прочность внезапно из-за хрупкого разрыва без явных признаков разрушения, поэтому необходим более высокий запас надёжности. Это связано с тем, что при недостаточных пластических деформациях стали и увеличения предварительных напряжений, напряжения не полностью погашаются, а суммируются с напряжениями от внешней нагрузки. Именно поэтому в преднапряжении запрещено применять хрупкие стали.

6. Реологические свойства арматуры

Ползучесть - увеличение деформаций под сжимающей нагрузкой во времени. Ползучесть нарастает с повышением напряжений и ростом температуры.

Релаксация - снижение напряжения в арматуре при жёстком закреплении её концов, стесняющих свободное деформирование. Наиболее интенсивно релаксация развивается в течение первых часов, однако она может продолжаться длительное время.

Релаксация зависит от прочности, химического состава, технологии изготовления, температуры и т.д. Это обуславливает потерю арматурой части заданного преднапряжения, поэтому снижается трещиностойкость и жёсткость.

СВОЙСТВА ЖЕЛЕЗОБЕТОНА

1. Сцепление арматуры с бетоном

Скольжению арматуры в бетоне препятствует сцепление между ними (сопротивление сдвигу). Надежное сцепление является основным фактором, обеспечивающим совместную работу арматуры и бетона в железобетоне и позволяющим ему работать под нагрузкой как единому монолитному телу. При отсутствии сцепления образование первой трещины влечет за собой возрастание удлинений на всем протяжении растянутой арматуры, что приводит к резкому раскрытию образовавшейся трещины, сокращению высоты сжатой зоны, снижению несущей способности.

В различных опытах сила сцепления арматуры с бетоном определялась сопротивлением скольжению забетонированного стержня при его выдергивании или выталкивании. Как показали опыты, сила сцепления меняется в широких пределах и в основном зависит от трех факторов:

    склеивания арматуры с бетоном, благодаря клеящей способности цементного теста (адгезия);

    сил трения, возникающих на поверхности арматуры благодаря зажатию стержней в бетоне при его усадке;

    сопротивления бетона усилиям среза, возникающим из-за наличия неровностей и выступов на поверхности арматуры.

Наибольшее влияние на сцепление оказывает третий фактор – он обеспечивает около 75% от общей величины сцепления. Первый фактор оказывает наименьшее влияние – до 25% всей силы сцепления.

Арматура периодического профиля с сильно шероховатой поверхностью обладает более высоким и надежным сопротивлением скольжению благодаря зацеплению и заклиниванию ее выступов в бетоне. По сравнению с гладкими стержнями арматура периодического профиля обладает в 2-3 раза большей силой сцепления с бетоном.

Рис. 3.8. Зацепление выступов арматуры за бетон

Напряжение в бетоне под выступами арматуры при ее выдергивании может превосходить в 5-7 раз кубиковую прочность бетона, поэтому недопустимо снижение плотности бетона в зоне контакта его с арматурой. Наиболее надежное повышение сопротивления скольжению арматуры в бетоне достигается соответствующим конструированием арматуры: устройством крюков на концах гладких стержней, применением анкеров.

Сопротивление сдвигу растет с увеличением марки цемента, уменьшением В/Ц, с увеличением возраста бетона (влияние усадки).

По длине заделки стрежня напряжения сцепления распределяются неравномерно, при этом наибольшее напряжение
не зависит от длины заделки.

Сопротивление скольжению растянутой арматуры (на выдергивание) меньше, чем сопротивление скольжению сжатой арматуры (на выталкивание), что объясняется поперечными деформациями самого стержня. С увеличением диаметра стального стержня и повышением нормального напряжения в нем сила сцепления его с бетоном при растяжении уменьшается, а при сжатии – увеличивается.

Рис. 3.10. Влияние диаметра арматуры на напряжение



Понравилась статья? Поделитесь с друзьями!