Как укрепить стену из кирпича? Усиление кирпичных стен здания металлическими тяжами и обвязочными поясами Способы усиления стен.

  • Общая площадь квартир (м2) по нормам проектирования
  • § 1.5. Жизненный цикл зданий
  • § 1.6. Моделирование процесса физического износа зданий
  • § 1.7. Условия продления жизненного цикла зданий
  • § 1.8. Основные положения по реконструкции жилых зданий различных периодов постройки
  • Глава 2 инженерные методы диагностики технического состояния конструктивных элементов зданий
  • § 2.1. Общие положения
  • Классификация повреждений конструктивных элементов зданий
  • § 2.2. Физический и моральный износ зданий
  • Оценка степени физического износа по материалам визуального и инструментального обследования
  • § 2.3. Методы обследования состояния зданий и конструкций
  • § 2.4. Инструментальные средства контроля технического состояния зданий
  • Характеристики тепловизоров
  • § 2.5. Определение деформаций зданий
  • Значение предельно допустимых прогибов
  • § 2.6. Дефектоскопия конструкций
  • Повреждения и дефекты фундаментов и грунтов основания
  • Число точек зондирования для различных зданий
  • Значения коэффициента к снижения несущей способности кладки в зависимости от характера повреждений
  • § 2.7. Дефекты крупнопанельных зданий
  • Классификация дефектов панельных зданий первых массовых серий
  • Допустимая глубина разрушения бетона за 50 лет эксплуатации
  • § 2.8. Статистические методы оценки состояния конструктивных элементов зданий
  • Значение показателя достоверности
  • Глава 3 методы реконструкции жилых зданий
  • § 3.1. Общие принципы реконструкции жилых зданий
  • Методы реконструкции зданий
  • § 3.2. Архитектурно-планировочные приемы при реконструкции жилых зданий ранней постройки
  • § 3.3. Конструктивно-технологические решения при реконструкции жилых зданий старой постройки
  • § 3.4. Методы реконструкции малоэтажных жилых зданий первых массовых серий
  • § 3.5. Конструктивно-технологические решения при реконструкции зданий первых массовых серий
  • Уровень реконструктивных работ жилых зданий первых типовых серий
  • Глава 4 математические методы оценки надежности и долговечности реконструируемых зданий
  • § 4.1. Физическая модель надежности реконструируемых зданий
  • § 4.2. Основные понятия теории надежности
  • § 4.3. Основная математическая модель для изучения надежности зданий
  • § 4.4. Методы оценки надежности зданий с помощью математических моделей
  • § 4.5. Асимптотические методы в оценке надежности сложных систем
  • § 4.6. Оценка среднего времени до возникновения отказа
  • § 4.7. Иерархические модели надежности
  • Методики оценки функции надежности p(t) реконструированных зданий
  • § 4.8. Пример оценки надежности реконструируемого здания
  • Глава 5 основные положения технологии и организации реконструкции зданий
  • § 5.1. Общая часть
  • § 5.2. Технологические режимы
  • § 5.3. Параметры технологических процессов при реконструкции зданий
  • § 5.4. Подготовительные работы
  • § 5.5. Механизация строительных процессов
  • § 5.6. Технологическое проектирование
  • § 5.7. Проектирование технологических процессов реконструкции зданий
  • § 5.8. Календарные планы и сетевые графики
  • § 5.9. Организационно-технологическая надежность строительного производства
  • Глава 6 технология производства работ по повышению и восстановлению несущей и эксплуатационной способности конструктивных элементов зданий
  • Расчетное сопротивление грунтов по нормам 1932 - 1983 гг.
  • § 6.1. Технологии укрепления оснований
  • § 6.1.1. Силикатизация грунтов
  • Радиусы закрепления грунтов в зависимости от коэффициента фильтрации
  • Технология и организация производства работ
  • Механизмы, оборудование и приспособления для проведения инъекционных работ
  • Значения коэффициента насыщения грунта раствором
  • § 6.1.2. Закрепление грунтов цементацией
  • § 6.1.3. Электрохимическое закрепление грунтов
  • § 6.1.4. Восстановление оснований фундаментов с карстовыми образованиями
  • § 6.1.5. Струйная технология закрепления грунтов оснований фундаментов
  • Прочность грунтоцементных образований
  • § 6.2. Технологии восстановления и усиления фундаментов
  • § 6.2.1. Технология усиления ленточных фундаментов монолитными железобетонными обоймами
  • § 6.2.2. Восстановление несущей способности ленточных фундаментов методом торкретирования
  • § 6.2.3. Усиление фундаментов сваями
  • § 6.2.4. Усиление фундаментов буроинъекционными сваями с электроимпульсным уплотнением бетона и грунтов
  • § 6.2.5. Усиление фундаментов сваями в раскатанных скважинах
  • Производство работ
  • § 6.2.6. Усиление фундаментов многосекционными сваями, погружаемыми методом вдавливания
  • § 6.3. Усиление фундаментов с устройством монолитных плит
  • § 6.4. Восстановление водонепроницаемости и гидроизоляции элементов зданий
  • § 6.4.1. Вибрационная технология устройства жесткой гидроизоляции
  • § 6.4.2. Восстановление гидроизоляции инъецированием кремнийорганических соединений
  • § 6.4.3. Восстановление наружной вертикальной гидроизоляции стен фундаментов
  • § 6.4.4. Технология повышения водонепроницаемости заглубленных конструкций зданий и сооружений путем создания кристаллизационного барьера
  • § 6.5. Технология усиления кирпичных стен, столбов, простенков
  • § 6.6. Технология усиления железобетонных колонн, балок и перекрытий
  • Усиление конструкций композитными материалами из углеродных волокон
  • Глава 7 индустриальные технологии замены перекрытий
  • § 7.1. Конструктивно-технологические решения замены междуэтажных перекрытий
  • График производства работ при устройстве монолитного перекрытия по профнастилу
  • § 7.2. Технология замены перекрытий из мелкоштучных бетонных и железобетонных элементов
  • § 7.3. Технология замены перекрытий из крупноразмерных плит
  • § 7.4. Возведение сборно-монолитных перекрытий в несъемной опалубке
  • § 7.5. Технология возведения монолитных перекрытий
  • § 7.6. Эффективность конструктивно-технологических решений по замене перекрытий
  • Трудозатраты на устройство междуэтажных перекрытий при реконструкции жилых зданий
  • Область эффективного применения различных конструктивных схем перекрытий
  • График производства работ по устройству сборно-монолитных перекрытий
  • Глава 8 повышение эксплуатационной надежности реконструируемых зданий
  • § 8.1. Эксплуатационные характеристики ограждающих конструкций
  • § 8.2. Повышение энергоэффективности ограждающих конструкций
  • § 8.3. Характеристики теплоизоляционных материалов
  • § 8.4. Технологии утепления фасадов зданий с изоляцией штукатурными покрытиями
  • § 8.5. Теплоизоляция стен с устройством вентилируемых фасадов
  • Физико-механические характеристики облицовочных плит
  • § 8.6. Технологии устройства вентилируемых фасадов
  • Характеристика средств подмащивания
  • График производства работ по теплозащите стен пятиэтажного 80-квартирного жилого дома серии 1-464
  • § 8.7. Оценка эксплуатационной надежности и долговечности утепленных фасадных поверхностей
  • § 8.8. Управляемые технологии энергопотребления жилых зданий
  • Список литературы
  • § 6.5. Технология усиления кирпичных стен, столбов, простенков

    При реконструкции жилых зданий со стенами из кирпичной кладки возникает необходимость восстановления несущей способности или усиления элементов кладки вследствие увеличения нагрузок от надстраиваемых этажей. При длительной эксплуатации зданий наблюдаются признаки разрушения простенков, столбов и кладки стен в результате неравномерных осадок фундаментов, атмосферных воздействий, протечек кровли и др.

    Процесс восстановления несущей способности кладки следует начинать с исключения основных причин трещинообразования. Если этому процессу способствует неравномерная осадка здания, то следует исключить это явление известными и описанными ранее методами.

    До принятия технических решений по усилению конструкций важно оценить фактическую прочность несущих элементов. Эта оценка выполняется методом разрушающих нагрузок, фактической прочности кирпича, раствора, а для армированной кладки - предела текучести стали. При этом необходимо наиболее полно учитывать факторы, снижающие несущую способность конструкций. К ним относятся трещины, локальные повреждения, отклонения кладки от вертикали, нарушение связей, опирания плит и т.п.

    Что касается усиления кирпичной кладки, то накопленный опыт реконструкционных работ позволяет выделить ряд традиционных технологий, основанных на использовании: металлических и железобетонных обойм, каркасов; на инъецировании полимерцементных и других суспензий в тело кладки; на устройстве монолитных поясов по верхней части зданий (в случаях надстройки), предварительно напрягаемых стяжек и др. решений.

    На рис. 6.40 приведены характерные конструктивно-технологические решения. Представленные системы направлены на всестороннее обжатие стен с использованием регулируемых натяжных систем. Они выполняются открытого и закрытого типов, при внешнем и внутреннем расположении, обеспечиваются антикоррозионной защитой.

    Рис. 6.40. Конструктивно-технологические варианты усиления кирпичных стен а - схема усиления кирпичных стен здания металлическими тяжами; б , в , г - узлы размещения металлических тяжей; д - схема размещения монолитного железобетонного пояса; е - то же, тяжами с центрирующими элементами: 1 - металлический тяж; 2 - натяжная муфта: 3 - монолитный железобетонный пояс; 4 - плита перекрытий; 5 - анкер; 6 - центрирующая рама; 7 - опорная пластинка с шарниром

    Для создания требуемой степени натяжения используются стяжные муфты, доступ к которым должен быть всегда открыт. Они позволяют по мере удлинения тяжей в результате температурных и других деформаций производить дополнительное натяжение. Обжатие элементов кирпичных стен производится в местах наибольшей жесткости (углы, сопряжения наружных и внутренних стен) через распределительные пластины.

    Для равномерного обжатия кладки стен используется специальная конструкция центрирующей рамы, которая имеет шарнирное опирание на опорно-распределительные пластины. Такое решение обеспечивает длительную эксплуатацию с достаточно высокой эффективностью.

    Места расположения тяжей и центрирующих рам закрываются различного рода поясами и не нарушают общий вид фасадных поверхностей.

    Для элементов стен, простенков, столбов, имеющих разрушения кирпичной кладки, но не потерявших устойчивость, производится местная замена кладки. При этом марка кирпича принимается на 1-2 единицы выше, чем существующая.

    Технология производства работ предусматривает: устройство временных разгрузочных систем, воспринимающих нагрузку; разборку фрагментов нарушенной кирпичной кладки; устройство кладки. При этом необходимо учитывать, что удаление временных разгрузочных систем должно осуществляться после набора прочности кладки не менее 0,7R КЛ . Как правило, такие восстановительные работы ведутся при сохранении конструктивной схемы здания и фактических нагрузок.

    Весьма эффективны приемы восстановления неоштукатуренной кирпичной кладки, когда требуется сохранить прежний вид фасадов. В этом случае очень тщательно подбираются кирпич по цветовой гамме и размерам, а также материал швов. После восстановления кладки производится пескоструйная очистка, что позволяет получать обновленные поверхности, где новые участки кладки не выделяются из основного массива.

    В связи с тем что каменные конструкции воспринимают в основном сжимающие усилия, то наиболее эффективным способом их усиления является устройство стальных, железобетонных и армоцементных обойм. При этом кирпичная кладка в обойме работает в условиях всестороннего сжатия, когда поперечные деформации значительно уменьшаются и, как следствие, увеличивается сопротивление продольной силе.

    Расчетное усилие в металлическом поясе определяется по зависимости N = 0,2R KJl ×l ×b , где R KJl - расчетное сопротивление кладки скалыванию, тс/м 2 ; l - длина участка усиливаемой стены, м; b - толщина стены, м.

    Для обеспечения нормальной работы кирпичных стен и предотвращения дальнейшего раскрытия трещин первоначальным этапом является восстановление несущей способности фундаментов методами усиления, исключающей появление неравномерных осадок.

    На рис. 6.41 приведены наиболее распространенные варианты усиления каменных столбов и простенков стальными, железобетонными и армоцементными обоймами.

    Рис. 6.41. Усиление столбов стальной обоймой (а), армокаркасами (б), сетками и железобетонными обоймами (в , г ) 1 - усиливаемая конструкция; 2 - элементы усиления; 3 - защитный слой; 4 - щитовая опалубка с хомутами; 5 - инъектор; 6 - материальный шланг

    Стальная обойма состоит из продольных уголков на всю высоту усиливаемой конструкции и поперечных планок (хомутов) из плоской или круглой стали. Шаг хомутов принимается не более меньшего размера сечения, но не более 500 мм. Для включения обоймы в работу следует инъецировать зазоры между стальными элементами и кладкой. Монолитность конструкции достигается путем оштукатуривания высокопрочными цементно-песчаными растворами с добавкой пластификаторов, способствующих большей адгезии с кладкой и металлоконструкциями.

    Для более эффективной защиты на стальную обойму устанавливается металлическая или полимерная сетка, по которой осуществляется нанесение раствора толщиной 25-30 мм. При незначительных объемах работ раствор наносится вручную с помощью штукатурного инструмента. Большие объемы работ выполняются механизированным путем с подачей материала растворонасосами. Для получения высокопрочного защитного слоя используются установки торкретирования и пнев-мобетонирования. Из-за высокой плотности защитного слоя и большой адгезии с элементами кладки достигается совместная работа конструкции и повышается ее несущая способность.

    Устройство железобетонной рубашки осуществляется путем установки арматурных сеток по периметру усиливаемой конструкции с креплением ее через фиксаторы к кирпичной кладке. Крепление осуществляется путем использования анкеров или дюбелей. Железобетонная обойма выполняется из мелкозернистой бетонной смеси не ниже класса В10 с продольной арматурой классов А240-А400 и поперечной - А240. Шаг поперечной арматуры принимается не более 15 см. Толщина обоймы определяется расчетом и составляет 4-12 см. В зависимости от толщины обоймы существенно меняется технология производства работ. Для обойм толщиной до 4 см используются методы нанесения бетона торкретированием и пневмобетонированием. Окончательная отделка поверхностей достигается устройством штукатурного накрывочного слоя.

    Для обойм толщиной до 12 см по периметру усиливаемой конструкции устанавливается инвентарная опалубка. В ее щитах устанавливаются инъекционные трубки, через которые мелкозернистая бетонная смесь нагнетается под давлением 0,2-0,6 МПа в полости. Для повышения адгезионных свойств и заполнения всего пространства бетонные смеси пластифицируются путем введения суперпластификаторов в объеме 1,0-1,2 % массы цемента. Снижение вязкости смеси и повышение ее проницаемости достигаются дополнительным воздействием высокочастотной вибрации путем контакта вибратора с опалубкой рубашки. Достаточно хороший эффект

    дает импульсный режим подачи смеси, когда кратковременные воздействия повышенного давления обеспечивают более высокий градиент скоростей и высокую проницаемость.

    На рис. 6.41, г приведена технологическая схема производства работ путем инъецирования железобетонной обоймы. Установка опалубки производится на всю высоту конструкции с обеспечением защитного слоя арматурного заполнения. Нагнетание бетона осуществляется по ярусам (3-4 яруса). Процесс окончания подачи бетона фиксируется по контрольным отверстиям с противоположной стороны от места нагнетания. Для ускоренного твердения бетона используются системы термоактивных опалубок, греющих проводов и другие приемы повышения температуры твердеющего бетона. Демонтаж опалубки осуществляется по ярусам при достижении бетоном распалубочной прочности. Режим твердения при t = 60 °С обеспечивает распалубочную прочность в течение 8-12 ч прогрева.

    Железобетонные обоймы могут выполняться в виде элементов несъемной опалубки (рис. 6.42). При этом наружные поверхности могут иметь мелкий или глубокий рельеф или гладкую поверхность. После установки несъемной опалубки и крепления ее элементов обеспечивается замоноличивание пространства между усиливаемой и ограждающей конструкцией. Использование несъемной опалубки имеет значительный технологический эффект, так как отпадает необходимость в разборке опалубки, а главное - исключается отделочный цикл работ.

    Рис. 6.42. Усиление столбов с использованием опалубки-облицовки из архитектурного бетона 1 - усиливаемая конструкция; 2 - армокаркас; 3 - элементы облицовки; 4 - бетон омоноличивания

    Наиболее эффективными несъемными опалубками следует считать тонкостенные элементы (1,5-2 см), изготовленные из дисперсно-армированного бетона. Для вовлечения опалубки в работу она снабжается выступающими анкерами, существенно повышающими адгезию с укладываемым бетоном.

    Устройство растворных обойм отличается от железобетонных толщиной наносимого слоя и составом. Как правило, для защиты арматурной сетки и обеспечения ее адгезии с кирпичной кладкой используются штукатурные цементно-песчаные растворы с добавкой пластификаторов, повышающих физико-механические характеристики. Технология строительных процессов практически не отличается от выполнения штукатурных работ.

    Для обеспечения совместной работы элементов обоймы по ее длине, превышающей в 2 и более раз толщину, необходима установка дополнительных поперечных связей через сечение кладки. Усиление кирпичной кладки может быть произведено методом инъецирования. Оно осуществляется путем нагнетания через заранее пробуренные шпуры цементного или полимерцементного раствора. В результате достигается монолитность кладки и повышаются ее физико-механические характеристики.

    К инъекционным растворам предъявляются достаточно жесткие требования. Они должны обладать малым водоотделением, низкой вязкостью, высокой адгезией и достаточными прочностными характеристиками. Раствор нагнетается под давлением до 0,6 МПа, что обеспечивает достаточно обширную зону проникновения. Параметры инъекции: расположение инъекторов, их глубина, давление, состав раствора в каждом конкретном случае подбираются индивидуально с учетом трещиноватости кладки, состояния швов и других показателей.

    Прочность кладки, усиленной инъецированием, оценивается по СНиП II-22-81* «Каменные и армокаменные конструкции». В зависимости от характера дефектов и вида инъецированного раствора устанавливаются поправочные коэффициенты: тк = 1,1 - при наличии трещин от силовых воздействий и при использовании цементного и полимерцементного растворов; тк = 1,0 - при наличии одиночных трещин от неравномерных осадок или при нарушении связи между совместно работающими стенами; тк = 1,3 - при наличии трещин от силовых воздействий при инъекции полимерных растворов. Прочность растворов должна быть в пределах 15-25 МПа.

    Усиление кирпичных перемычек достаточно распространенное явление, что связано со снижением несущей способности распорной кладки вследствие выветривания швов, нарушения адгезии и другими причинами.

    На рис. 6.43 приведены конструктивные варианты усиления перемычек с использованием различного рода металлических накладок. Они устанавливаются путем пробивки штраб и отверстий в кирпичной кладке и в дальнейшем омоноличиваются цементно-песчаным раствором по сетке.

    Рис. 6.43. Примеры усиления перемычек кирпичных стен а , б - путем подведения накладок из уголковой стали; в , г - дополнительными металлическими перемычками из швеллера: 1 - кирпичная кладка; 2 - трещины; 3 - накладки из уголков; 4 - полосовые накладки; 5 - анкерные болты; 6 - накладки из швеллера

    Для перераспределения усилий на железобетонные перемычки вследствие увеличения нагрузок на перекрытия используются металлические разгрузочные пояса, выполненные из двух швеллеров и объединенные болтовыми соединениями.

    Усиление и повышение устойчивости кирпичных стен. Технология усиления базируется на создании дополнительной железобетонной рубашки с одной или двух сторон стены (рис. 6.44). Технология производства работ включает процессы подготовки и очистки поверхности стен, сверления отверстий под анкеры, установки анкеров, крепления к анкерам арматурных стержней или сеток, омоноличивание. Как правило, при достаточно больших объемах работ используется механизированный метод нанесения цементно-песчаного раствора: пневмобетонированием или торкретированием и реже ручным способом. Затем для выравнивания поверхностей наносится затирочный слой и выполняются последующие операции, связанные с отделкой поверхностей стен.

    Рис. 6.44. Усиление кирпичных стен армированием а - отдельными стержнями арматуры; б - арматурными каркасами; в - арматурной сеткой; г - железобетонными пилястрами: 1 - усиливаемая стена; 2 - анкеры; 3 - арматура; 4 - штукатурный или торкрет-бетонный слой; 5 - металлические тяжи; 6 - арматурная сетка; 7 - армокаркас; 8 - бетон; 9 - опалубка

    Эффективным приемом усиления кирпичных стен является устройство железобетонных одно- и двусторонних стоек в штрабах и пилястр.

    Технология устройства двусторонних железобетонных стоек предусматривает образование штраб на глубину 5-6 см, высверливание сквозных отверстий по высоте стены, крепление с помощью тяжей арматурного каркаса и последующее омоноличивание образовавшейся полости. Для омоноличивания используют цементно-песчаные растворы с пластифицирующими добавками. Высокий эффект достигается при использовании растворов и мелкозернистых бетонов с предварительным домолом цемента, песка и суперпластификатора. Такие смеси кроме большой адгезии обладают свойством ускоренного твердения и высокими физико-механическими характеристиками.

    При возведении односторонних железобетонных пилястр требуется устройство вертикальных штраб, в полости которых устанавливают анкерные устройства. К последним осуществляется крепление арматурного каркаса. После его размещения производится установка опалубки. Она выполняется из отдельных фанерных щитов, объединенных хомутами и прикрепляемых к стене с помощью анкеров. Мелкозернистая бетонная смесь нагнетается с помощью насосов поярусно через отверстия в опалубке. Подобная технология применяется при двустороннем устройстве пилястр с той разницей, что процесс крепления щитов опалубки осуществляется с помощью болтов, перекрывающих толщину стены.

    При землетрясениях здания и сооружения получают наряду с обычными дополнительные характерные повреждения, степень которых во многом зависит от распределения элементов, воспринимающих сейсмическую нагрузку в плане здания и по его высоте, т.е. от конструктивной схемы сооружения и вида материалов, использованных для изготовления строительных конструкций. Наглядным примером сравнительной сейсмостойкости зданий с конструкциями из различных материалов могут служить данные обследования последствий землетрясения с магнитудой M = 7,5 в мае 1960 г. в г. Консенсьоне (Чили), приведенные в табл. 6.1.

    Последствия многих землетрясений в бывш. СССР позволяют дополнить конструктивные схемы, приведенные в табл. 6.1, крупнопанельными зданиями и зданиями со стенами из монолитного легкого и тяжелого бетонов.
    Средняя степень повреждений при Кайраккумском 1985 г. землетрясении, по данным, составляла: кирпичных зданий 2,22...2,8; каркасных 1,5; крупнопанельных 1,33, а по данным, - крупнопанельных 1,3...1,7 и кирпичных 1,3...2,7. При Газлийском 1984 г. землетрясении степень повреждений составляла: кирпичных зданий 3...4, крупнопанельных 2...3, со стенами из монолитного керамзитобетона 2...3, степень повреждения монолитных домов, выполненных в скользящей опалубке при Карпатском 1986 г. землетрясении, по данным Госстроя Молдавии, составляла в зависимости от этажности 1,8...2,6.
    Способы восстановления и усиления зданий, пострадавших в результате землетрясений, могут быть разделены на три типа. Первый тип - объединяет все приемы восстановления отдельных несущих элементов зданий (простенки, стены, колонны, ригели, плиты перекрытий, блоки, панели). Эти общие приемы восстановления, которые применимы и при ликвидации повреждений, вызванных землетрясениями, частично изложены ранее. Второй тип - способы восстановления связей между частями и элементами здания (углы, пересечения и сопряжения стен, панелей, блоков, узлы железобетонных рам и т.п.). Третий тип - включает в себя способы восстановления и повышения пространственной жесткости здания, увеличения способности здания как системы в делом воспринимать и распределять сейсмическую нагрузку между всеми несущими элементами. Для наглядности показаны все три типа восстановления в виде схемы на рис. 6.1.

    Решения по обеспечению пространственной жесткости здания достаточно общие для зданий различных конструктивных схем, потому они выделены в самостоятельную группу. Утрата пространственной жесткости здания характеризуется значительным расстройством связей между вертикальными элементами здания, между вертикальными элементами и горизонтальными, а также повреждениями в местах заделки вертикальных элементов в грунт. Восстановление пространственной жесткости здания позволяет обеспечить перераспределение усилий между элементами, улучшить передачу и поглощение энергии соответствующими конструкциями.
    Пространственная жесткость здания может быть обеспечена:
    - устройством горизонтальных гибких напрягаемых поясов, которые выполняют из круглой стали или многопрядевых канатов. Напряжение их производится с помощью муфт (по две в каждом пролете) или болтовых соединений (рис. 6.2). По углам здания устанавливают уголки, к которым в уровне каждого тяжа крепится наружный горизонтальный пояс (рис. 6.2, в). Элементы пояса соединяются в местах пересечения стен стальными полосами толщиной 1...2 см. К этим же полосам крепятся с помощью гаек сквозные тяжи, уложенные вдоль внутренних поперечных стен (рис. 6.2, г). Предварительное напряжение производится в двух горизонтальных направлениях, значение напряжения определяется расчетом с учетом потерь при напряжении, как указано ранее;

    - устройством наружного металлического каркаса. Каркас выполняется в виде сплошных поясов и стоек прижимов из швеллеров N 12 и угловых стоек из уголков 150х150х10, которые стягиваются со стеной болтами через 1...1,5 м по выпоте и длине, а в местах примыкания к поперечным стенам тяжами диаметром 24 мм с каркасом противоположной стены (рис. 6.3). Для этого в уровне перекрытия во внутренней стене просверливают отверстия, устанавливают, как и на внутренней стороне наружной стены, уголки или пластины для крепления тяжей. Тяжи натягивают с помощью муфт или нагревом и при достижении требуемой степени натяжения закрепляют. Отверстия инъецируют раствором, а выступающие наружные элементы защищают от коррозии;

    - устройством дополнительных поперечных стен или рам каркаса из стали, дерева, железобетона от стены до стены, к которым с помощью изложенных в предыдущем случае мер прочно крепят стены. Для крепления допускается устройство тяжей-коротышей на сварке. Одним из вариантов является устройство наружных железобетонных рам, которые обрамляют здание как в плоскости всех поперечных стен, так и в пролете между ними (рис. 6.4). Поперечные П-образные рамы в продольном направлении связаны между собой монолитными или сборно-монолитными железобетонными ригелями в уровне конька, карнизов, перекрытий и фундаментных балок. Все конструкции усиления сваркой и последующим за-моноличиванием надежно соединяются с антисейсмическими обвязками поврежденного здания. Этот способ восстановления позволяет проводить работы, не прерывая эксплуатации здания.

    Встречаются и другие решения, направленные на обеспечение пространственной работы здания. Например решения с устройством двухстороннего железобетонного пояса в уровне перекрытия (рис. 6.5) или под перекрытием (рис. 6.6), в том числе выполняемого из отдельных сборных железобетонных элементов (рис. 6.7).

    Как следует из табл. 6.1 и других материалов, степень повреждения зданий зависит от их конструктивного решения, что диктует необходимость выработки для зданий каждого типа своих способов восстановления с учетом физического износа элементов и степени сейсмовооружения объекта. В связи с этим способы восстановления и усиления зданий и сооружений рассматриваются далее применительно к соответствующим конструктивным схемам.

    Усиление каркасных зданий. Необходимость в усилении элементов каркасных зданий может быть вызвана ухудшением их технического состояния в процессе длительной эксплуатации или выявлении несоответствия несущей способности уточненным значениям расчетных нагрузок на здание в целом или его отдельные конструкции. Особенность повреждения каркасных зданий в результате сильных землетрясений состоит в том, что даже частичная потеря устойчивости сооружения наступает только тогда, когда большинство несущих элементов и узлов их сопряжений почти утратило несущую способность. Поэтому вопрос о восстановлении пространственной жесткости каркасных зданий в целом ставится исключительно редко, так как в большинстве случае это экономически нецелесообразно и равноценно возведению нового здания. В связи с этим основной задачей восстановления каркасных зданий является усиление отдельных деформированных элементов каркаса и связей между ними, что подробно рассмотрено ранее.
    Повреждение зданий с каркасом из железобетонных элементов при землетрясениях часто происходит из-за низкой прочности бетона в колоннах и ригелях, недостаточного количества поперечной арматуры. Усиление железобетонных конструкций производится увеличением их сечений в результате устройства обойм из жесткой или гибкой арматуры с последующим обетонированием поверхностей. При этом должны предусматриваться конструктивные решения, обеспечивающие совместную работу старого и нового бетона конструкций. Чаще всего производится сварка старой и новой уставливаемой арматуры или выполняется предварительное напряжение поперечной арматуры. В последние годы при усилении железобетонных конструкций находят применение полимерные композиции для склеивания существующих и дополнительно устанавливаемых элементов из металла, предварительно напрягаемого железобетона или стекловолокна.
    Опорные узлы сборных железобетонных каркасов могут усиливаться металлическими накладками, профильным металлом в сочетании со стяжными болтами, арматурными скобами, железобетонными обоймами; недостаточное количество поперечной арматуры на опорных участках ригелей следует компенсировать замкнутыми хомутами со стяжными муфтами, устройством металлических обойм. Усиление плоских железобетонных элементов, например плит перекрытий, может быть выполнено увеличением высоты их сечения, устройством дополнительных балок, соединением старого и нового бетона болтами, анкерами, тяжами или склеиванием полимерными составами.
    Несущая способность металлических каркасов увеличивается обетонированием колонн, установкой дополнительных стальных элементов, увеличивающих сечение колонн, ригелей или выполняющих роль связей между колоннами, заменой ослабленных элементов, устройством диафрагм, воспринимающих частей сейсмических нагрузок и снижающих тем самым нагрузки на основные конструкции существующего здания.
    Усиление крупнопанельных зданий. Крупнопанельные здания, рассчитанные с учетом сейсмической опасности, по своей надежности могут быть сопоставимы с сейсмостойкими каркасными зданиями. Анализ характера повреждений конструкций крупнопанельных зданий при землетрясениях показывает, что при необходимости повышения их сейсмостойкости для усиления конструкций таких зданий могут приниматься следующие способы: устройство шпонок ПАШ и инъецирование в трещины панелей полимеррастворов; установление дополнительных связей (шпонок, металлических накладок и т.п.) в горизонтальных и вертикальных стыках панелей, в местах сопряжения панелей стен и перекрытий; инъецирование раствора в трещины при ширине их раскрытия до 0,6 см или при недостаточной прочности панелей - торкретирование их поверхностей полностью или на участках панелей с дефектами или повреждениями, а в необходимых случаях замена отдельных панелей.
    Анализ состояния усиленных крупнопанельных зданий показал, что в результате землетрясения в г. Газли в 1984 г. только 20% соединений ПАШ получили повреждения и потребовалась их замена. Основная доля поврежденных шпонок приходится на горизонтальный шов между цокольной панелью и стеновыми панелями первого этажа. Одна из причин такого повреждения - отсутствие пространства, в связи с чем нижний горизонтальный стык первого этажа оказался ослабленным.
    Характер трещинообразования в стеновых панелях указывает на концентрацию напряжений в зоне ПАШ и на необходимость разработки способов, обеспечивающих более равномерное распределение связей в швах. Такими мероприятиями могут быть увеличение числа шпонок с уменьшением их сечения и армирования, оклейка стыка стеклотканью на эпоксидном клее и др. Повреждения стеновых панелей наблюдались в основном в наружных стенах из керамзитобетона в виде наклонных трещин от шпонок к углам проемов. Полученные повреждения легко устранимы и уже в первые месяцы после землетрясения были повторно восстановлены и сданы в эксплуатацию пять крупнопанельных зданий, а затем остальные.
    Таким образом, впервые суммарно проверен способ восстановления крупнопанельных зданий с помощью инъецирования полимеррастворов в трещины панелей и усиление связей устройством ПАШ, причем образцы испытаны не только при статическом нагружении, на натурных фрагментах и на зданиях при динамических воздействиях, но и при землетрясении высокой интенсивности.
    Усиление крупноблочных зданий. Сейсмостойкость зданий, построенных из крупных блоков, из природного камня или легких бетонов, зависит в основном от качества связей между отдельными блоками, между стенами взаимоперпендикулярного направления и связей между стенами и перекрытиями, прочности материалов, блоков, прочностных свойств оснований и фундаментов. Наиболее уязвимыми элементами крупнообломочных зданий при землетрясениях являются связи между конструкциями; для их усиления, кроме способов, изложенных выше рекомендуется; устройство предварительно напряженных тяжей не только в горизонтальном, но и вертикальном направлениях. Для этого с наружной стороны здания к арматуре перемычечных блоков через отрезки неравнобоких уголков приваривают вертикальные стальные тяжи d = 20...36 мм. Предварительное напряжение создается стягиванием соседних ветвей тяжа горизонтальными скобами. Расчет обжатия определяется из условия компенсации отклонений от требуемого нормального сцепления.
    Если необходимо усилить внутренние стены, то тяжи устанавливают с двух сторон каждого простенка. В случае когда требуется усилить связи в вертикальных швах перемычечных блоков, тяжи крепят к напрягаемому горизонтальному металлическому поясу. Пояс выполняют из швеллера и прикрепляют на болтах к перемычечным блокам. Такой способ увеличения пространственной жесткости здания был применен при восстановлении домов из легких бетонных блоков, пострадавших в результате землетрясения в 1971 г. в Петропавловске-Камчатском (рис. 6.8, а). При установке горизонтального напрягаемого пояса в нему могут быть прикреплены стены перпендикулярного направления с помощью напрягаемых металлических тяжей, присоединенных к специально установленной закладной детали (рис. 6.8, б);

    - устройство железобетонных или металлических шпонок для воспринятия сдвигающих усилий между блоками. Железобетонные шпонки размером 30х30 см ставят не более двух на вертикальный стык в пределах этажа. Металлические шпонки размером 40х20х2 см устанавливают на растворе в специально подготовленные углубления с двух сторон блоков (рис. 6.9).
    При недостаточной прочности материалов блоков их несущая способность может быть повышена торкретированием поверхности стен по металлической сетке. При необходимости проводятся работы по устройству дополнительных стен или железобетонных рам, разделение сложного в плане здания на отдельные отсеки.

    Усиление зданий со стенами из кирпича и камня. Сейсмостойкость зданий с кирпичными и каменными стенами в основном определяется: монолитностью кладки, зависящей от прочности сцепления раствора с кирпичом, камнем или блоками типа кладки, прочности материалов; прочностью связей между стенами взаимоперпендикулярного направления; наличием вертикального и горизонтального армирования кладки и горизонтальных антисейсмических поясов; конструкцией междуэтажных перекрытий и их связей со стенами.
    В зависимости от состояния конструкций здания со стенами из мелкоштучных материалов - кирпича, блоков, из искусственных материалов или природного камня применяются следующие основные способы их усиления:
    - торкретирование по металлической сетке с одной или с двух сторон стен с проемами или сплошных стен полностью или отдельными участками;
    - устройство металлических каркасов, применяемых в случае массового отрыва стен (рис. 6.3). Для этого по наружным стенам здания в углах и местах пересечения с внутренними стенами устанавливают стойки, а в уровне перекрытий - пояса из проката. Все элементы притягивают к стенам через 100...150 см по высоте и длине. Отверстия под тяжами инъецируют, а открытые элементы оштукатуривают;
    - использование напрягаемых вертикальных и горизонтальных жестких или гибких стальных поясов и затяжек. Металлические затяжки устраивают при отсутствии или недостаточном армировании пересечений стен, в случае взаимного их отрыва, а также при креплении выпучившейся стены (рис. 6.4, а). Затяжки выполняют в виде тяжей из арматуры и крепежных элементов из уголков, швеллеров и пластин. Тяжи обычно выполняют преднапряженными механическим и электрическим способами, а крепежные элементы устанавливают в специально пробитые штрабы или гнезда и оштукатуривают;
    - устройство железобетонных или стальных антисейсмических поясов в уровнях перекрытий (см. рис. 6.5 и 6.6);
    - введение в кладку железобетонных или стальных элементов усиления (рис. 6.10);

    - устройство дополнительных стен или рам для уменьшения расстояния между несущими стенами и соответствующих вертикальных и горизонтальных нагрузок. При усилении кирпичных зданий введением дополнительных диафрагм, контрфорсов и рам особое внимание уделяется их связи со стенами и перекрытиями во всех уровнях. Диафрагмы и рамы выполняют в железобетоне или стали, а контрфорсы в кирпиче или монолитном бетоне. Крепление диафрагм и рам к стенам осуществляют анкерами, пропускаемыми сквозь стену, или устройством армированных торкрет-бетонных обойм (прокладок), а к перекрытиям - специальными шпонками или скобами;
    - устройство специальных связей между продольными и поперечными стенами (анкеров, тяжей, шпонок), которые воспринимают сдвигающие, растягивающие, крутящие усилия;
    - усиление отдельных участков стен цементацией или инъецированием полимерцементных растворов;
    - замена или усиление конструкций междуэтажных перекрытий, не обеспечивающих равномерную передачу сейсмических нагрузок на стены.
    В зданиях старой постройки со сложной конфигурацией плана может производиться разборка отдельных участков стен и разделение здания на отдельные отсеки. При значительных повреждениях и перекладке стен устанавливают каркасы из арматурной стали диаметром не менее 10 мм, как показано, на рис. 6.11. При усилении зданий могут применяться как отдельные из указанных способов, так и их комбинации.

    Анализ данных по деформациям зданий и сооружений в рассматриваемых условиях показал, что выбор способа усиления несущих конструкций зависит от инженерно-геологических условий (свойств грунтов) и степени их изученности, характера и величины приложенной нагрузки, детальности обследования существующих фундаментов, сохранности существующих конструкций, способа производства работ и типа применяемого оборудования.

    Особо опасные деформации происходят в построенных без учета развития неравномерных осадок старых зданиях, получивших повреждения и имеющих многочисленные дефекты, ослабляющие несущие конструкции: трещины в стенах, сдвиги перекрытий и лестничных маршей, перекосы проемов, отклонения стен от вертикали и др.

    Исходя из особенностей и характера примыкания принимаются те или иные конструктивные мероприятия, направленные на обеспечение эксплуатационной пригодности существующих зданий: предупредительные проектные решения; предупредительные меры, необходимые при производстве работ; ремонтные меры при возникновении аварийных ситуаций.

    Усиление конструкций может выполняться по временной и по постоянной схеме. Временное усиление конструкций применяют в случаях длительного развития деформаций при возникновении аварийных повреждений зданий. По мере стабилизации деформаций временное усиление заменяется постоянным.

    Усиление конструкций, как предупредительное, так и восстановительное, выполняется увеличением несущей способности элементов сооружения или изменением конструктивной схемы зданий путем увеличения его пространственной жесткости и прочности.

    К настоящему времени разработаны и проверены практикой многочисленные методы восстановления эксплуатационных качеств зданий. Одни методы позволяют усилить надфундаментные конструкции креплением простенков в кирпичных домах, устройством накладных и напряженных поясов, разгрузочных балок, скоб-стяжек и т.п. Другими методами повышают несущую способность основания, реконструируют или усиливают фундамент устройством сплошной фундаментной плиты, расширением или заглублением фундамента, подведением под стены здания свай типа «Мега», набивных, буроинъекционных и т.п., вдавливанием существующих свай с увеличением их длины.

    Прежде чем начать работу по усилению отдельных конструкций, необходимо их разгрузить с помощью установки временных опор. Однако здесь нередко допускаются ошибки: нагрузка лежащих выше деформированных конструкций сосредоточенно передается на деформирующийся фундамент и тем самым ухудшаются условия его работы. Нагрузку необходимо перераспределить так, чтобы разгрузить полностью или частично деформирующийся фундамент, т.е. передать ее на надежное основание, иногда через специально выполненные опоры (площадки). За временными опорами необходимо вести постоянные наблюдения и при необходимости подбивать под них клинья или ставить дополнительные разгружающие опоры.

    Деформированные простенки между оконными, дверными или иными проемами кирпичных зданий усиливают путем устройства металлических или железобетонных корсетов (обойм). Если выполнено временное крепление лежащей выше кладки, простенки могут быть усилены частичной или полной их перекладкой.

    Конструкция металлического корсета состоит из вертикальных стоек уголковой стали с шириной полок 100—120 мм, охватывающих углы простенка, и приваренных к стойкам через определенный интервал горизонтальных планок из полосовой стали толщиной 6—8 мм. Такой корсет почти вдвое повышает несущую способность простенка (рис. 8.3). С внутренней стороны здания части металлического каркаса устраиваются с заглублением в тело простенка и последующим оштукатуриванием борозд. Железобетонный корсет применяется в тех случаях, когда напряжение в рабочем сечении простенка может вызвать разрушение кладки. Стойки такого корсета также могут располагаться в вертикальных бороздах, пробиваемых в кладке простенков.

    Рис. 8.3.

    1 — кирпичная кладка; 2 — металлическая планка; 3 — уголок

    В тех случаях, когда в конструкциях здания возникают опасные трещины в местах примыкания капитальных стен друг к другу, стены отклоняются от вертикальной плоскости и выпучиваются их отдельные участки, в целях предотвращения дальнейшего развития деформаций устраивают накладные пояса (рис. 8.4). Эти пояса представляют собой систему парных вертикальных анкеров из швеллеров № 12—14, объединенных горизонтальными тяжами из круглой стали диаметром 18—28 мм. Тяжи лучше всего устраивать на уровне железобетонных перекрытий с последующим укрытием их под полами. Натяжение тяжей ведется вручную с помощью муфт, имеющих обратную нарезку. Рассчитываются тяжи по усилию на растяжение кладки. С наружной стороны анкеры и тяжи можно утапливать в штрабу, которая затем оштукатуривается.

    Рис. 8.4.

    1 — накладной пояс из швеллера; 2 — металлический тяж

    В зимнее время не исключена возможность проявления изморози на металлических частях накладных поясов внутри зданий, поэтому на наружной части тяжей необходимо устраивать теплоизолирующие прокладки.

    Напряженные пояса конструкции Козлова применяются в тех случаях, когда в стенах зданий возникают трещины со значительным раскрытием и большой протяженностью. Такие пояса придают зданию пространственную жесткость, снимают растягивающие напряжения в кладке и передают их на металл (рис. 8.5).

    Рис. 8.5.

    а — фасад; б — план части здания; в — варианты размещения тяжей; 1 — арматурный тяж диаметром 22 — 32 мм; 2 — штраба

    Применение напряженных поясов имеет определенные преимущества по сравнению с другими способами, поскольку они обеспечивают: выравнивание неравномерных деформаций коробки здания; ведение восстановительных работ без нарушения нормальной эксплуатации здания; исключение перекладки значительных участков стен; экономичное расходование металла на восстановление поврежденных стен и здания.

    Напряженные пояса состоят из металлических стержней диаметром 22—32 мм, охватывающих поврежденное здание или его отсек на уровне междуэтажных и чердачного перекрытий. Стержни натягивают обычно вручную резьбовыми муфтами. Для установки стержней поясов пробивают горизонтальные штрабы с наружной стороны стен. Стержни крепят к опорным частям, представляющим собой вертикальные уголки № 10—15, установленные на углах или пересечениях стен. Пояса должны быть замкнутыми. Согласно методике Академии коммунального хозяйства им. К.Д. Памфилова, длина большой стороны пояса не должна превышать 1,5 длины короткой. Длинная сторона обычно составляет 15—18 м. Пояс, охватывающий деформированную часть здания, должен быть заведен на неповрежденную часть не менее чем на 1,5 длины деформированного участка.

    Сечение тяжей подбирается по усилию, зависящему от расчетного сопротивления кладки на скалывание, толщины стены и ее длины. Сечение стержней, воспринимающих изгибающий момент в стене, назначается таким, чтобы их прочность равнялась прочности кладки, воспринимающей перерезывающую силу:

    N = 0,2Rlb ,

    где N — усилие в стержне, кН; R — расчетное сопротивление кладки скалыванию, кН/м 2 ; l — длина стены, м; b — толщина стены, м.

    Трещины в стенах здания можно укрепить с помощью скоб-стяжек, устанавливаемых на уровне каждого этажа. Назначение таких скоб — перераспределение нагрузки от деформированных участков стен на прочные участки. Такое мероприятие позволяет предотвратить дальнейшее раскрытие трещин. Скоба-стяжка (рис. 8.6) состоит из обрезка швеллера или уголка длиной не менее 2 м, скрепленного со стеной двумя анкерными болтами диаметром 20—22 мм. Анкерный болт располагается на расстоянии не ближе 1 м от трещины.

    Рис. 8.6. Усиление кирпичных зданий с помощью скоб-стяжек или разгрузочных балок (размеры в см)

    а — фасад; б — фрагмент усиления, 1 — скоба-стяжка; 2 — разгрузочная балка из швеллера на уровне верха фундамента (на уровне 1-го или подвального этажа), 3 — стяжной болт, 4 — планка-анкер; 5 — бетон марки 100

    В отличие от скоб-стяжек, обеспечивающих локальное усиление поврежденного участка стены, разгрузочные балки служат для общего усиления здания. Обычно их устраивают из швеллеров № 22—27 и ставят на уровне верха фундамента или на уровне оконных перемычек первого или подвального этажа (см. рис. 8.6).

    Двусторонние разгрузочные балки устанавливают при толщине стен более 64 см и анкеруют болтами диаметром 16—20 мм через 2—2,5 м. Односторонние разгрузочные балки ставят при малой толщине стен и анкеруют полосовым или круглым железом с тем же интервалом, что и двусторонние балки.

    Скобы-стяжки и разгрузочные балки устанавливают на цементном растворе в штрабе глубиной не менее ширины полки. По окончании крепления анкеров штраба заполняется бетоном марки 100 с уплотнением. Все металлические детали скоб-стяжек и разгрузочных поясов должны быть покрыты антикоррозионными составами.

    Для крупнопанельных зданий в связи с их конструктивными особенностями нужны иные решения по усилению. Для таких зданий предупредительные меры осуществляются введением горизонтального поэтажного армирования (рис. 8.7); усилением крепления плит перекрытий на панелях внутренних и наружных стен (рис. 8.8); устройством консольных опираний перекрытий (рис. 8.8, в ); армированием вертикальных стыков и др.

    Рис. 8.7.

    а — анкерами; б — тяжами; 1 — анкер; 2 — стеновая панель; 3 — тяж; 4 — арматурный каркас; 5 — тяжи; 6 — штукатурка по сетке; 7 — металлический уголок

    Рис. 8.8.

    а — вывешиванием перекрытий; б — применением стеновых панелей с консольным уширением; в — установкой ребер жесткости; 1 — металлическая серьга; 2 — балка; 3 — перекрытие; 4 — стеновая панель; 5 — тяж; 6 — трещины, сколы; 7 — консоль; 8 — штукатурка па сетке

    Увеличение пространственной жесткости сооружения изменением конструктивной схемы позволяет перераспределить усилия в конструкциях, обеспечив более эффективную их работу. Для этого можно установить дополнительные конструкции в виде стоек, подкосов, порталов, ввести связи, диафрагмы, распорки и др. (рис. 8.9).

    Рис. 8.9.

    а — дополнительная колонна; б — подкосы; в — портал; г — подкосы

    Указанные способы в первую очередь применимы для многоэтажных производственных зданий каркасного типа, являются достаточно эффективными и позволяют разгрузить конструкции, получившие повреждения Во всех случаях усиливающие элементы должны быть включены в совместную работу с существующими конструкциями Для этой цели усиливающие элементы обжимают домкратами, подклинивают, заделывают зазоры раствором на расширяющемся цементе и т.п.

    Усиление стен кирпичных позволяет повысить их эксплуатационные характеристики. Очень часто можно видеть трещины в стенах кирпичного дома, что указывает на их слабость и наличие плохой несущей опоры. Существуют различные методы усиления кирпичных стен, позволяющие повысить их стойкость. О некоторых из них расскажет статья.

    Основанием для укрепления кирпичных стен является их деформация, причинами которой могут быть:

    • Конструктивные ошибки . К ним относятся:
    1. недостаточная глубина фундамента;
    2. неравномерность при оседании частей дома;
    3. деформации, возникшие в балочном покрытии;
    4. несоответствие несущей способности конструкции и нагрузки на нее.
    • Эксплуатация . В этом случае возможно произошло:
    1. переувлажнение укладки;
    2. проседание фундамента.
    • Ошибки, возникшие при кладке стен.

    Оценка степени повреждения кирпичных стен, по потере элементами несущей способности, может быть:

    Слабая - до 15%. Обусловлена:

    1. размораживанием;
    2. действием ветряной нагрузки;
    3. повреждениями материала стен от огня на глубину до 5 миллиметров;
    4. косыми и вертикальными трещинами, пересекающимися не более чем в двух рядах кладки.

    Средняя - до 25%. Вызвана:

    1. выветриванием и размораживанием кладки;
    2. отслоением облицовочного материала на толщину до 25%;
    3. повреждения кирпича от огня на глубину до двух сантиметров;
    4. косыми и вертикальными трещинами, которые пересекаются до четырех рядов кладки;
    5. выпучиванием и наклоном стен на одном этаже, не превышающем пятую часть толщины конструкции;
    6. образованием трещин на участках пересечения поперечных и продольных стен, вызванные нарушением кладки перемычек и под опорами балок;
    7. смещением до двух сантиметров плит перекрытий.

    Высокая - до 50%. Это может возникнуть из-за:

    1. обрушения стен;
    2. выветривания и размораживания кладки до 40% к ее толщине;
    3. повреждений материала стен от огня на глубину до 6 сантиметров:
    4. косых и вертикальных трещин, за исключением температурных и осадочных, на высоту 7 рядов кладки;
    5. выпучиваний и наклонов стен на одном этаже на один процент его высоты;
    6. смещений стоек и стен по косой штрабе или горизонтальным швам;
    7. отрыва продольных стен от поперечных;
    8. повреждений кладки под стойками балок и перемычек глубиной более 2 сантиметров;
    9. смещений плит перекрытия на опорах больше 4 сантиметров.

    Совет: Стены, которые потеряли больше 50% прочности, следует считать разрушенными. Наличие вышеуказанных повреждений является основанием, чтобы проводить ремонтно-восстановительные работы.

    Как можно усилить кирпичные стены

    Ремонт и последующее усиление кирпичных стен, схемы его проведения могут быть самые разные, но в любом случае необходимо:

    • Отремонтировать цоколь здания.
    • Заделать трещины.
    • Отремонтировать и усилить перемычки.
    • Усилить отдельные простенки и стойки.
    • Обеспечить пространственную жесткость стен.
    • Выполнить перекладку на отдельных участках стен.
    • Заложить или устроить проемы.
    • Усилить кладку стен инъекцированием.

    В кирпичных домах трещины могут быть:

    • Узкими - 5 миллиметров. Такие дефекты необходимо:
    1. расшить;
    2. промыть водой;
    3. зачеканить торкретбетоном.
    • Широкими – до 40 миллиметров, не нарушающие целостность кладки . Заделываются в такой же последовательности, как и узкие трещины.
    • Более 4 сантиметров нарушают целостность кладки. В этом случае трещина:
    1. расчищается;
    2. промывается водой;
    3. зачеканивается торкретбетоном;
    4. по длине трещины высверливаются отверстия;
    5. вставляются в отверстия инъекторы;
    6. в полость трещины под давлением закачивается специальный раствор.

    На схеме:

    • 1 - трещина в кладке.
    • 2 - установка инъекционных шпуров.
    • 3 - патрубки для инъекций.
    • 4 - раствор из цемента и песка.

    Стены из силикатного кирпича можно укрепить такими способами, как:

    • Использование обойм из армированных растворов.
    • Усиление кирпичных стен стальными тяжами.
    • Устройство железобетонных обойм по периметру здания.
    • Применение композиционных материалов для обойм.
    • Усиление кирпичных стен стальными обоймами.

    Выбирая метод усиления дома, следует учитывать большое количество факторов.

    Это могут быть:

    • Марка, используемого для штукатурки, бетона или раствора.
    • Процент армирования здания.
    • Состояние кладки стены.
    • Схема нагрузки на все здание.

    Прочность кладки из кирпичей зависит непосредственно от процента армирования ее хомутами.

    При внешнем осмотре можно оценить:

    • Число трещин.
    • Их размеры: глубину и ширину.

    Совет: Чтобы восстановить прочность несущих стен дама, где имеются трещины, необходимо выполнить их усиление обоймами.

    Как сделать армированную обойму

    Устранить трещины и предотвратить появления новых дефектов своими руками можно, сделав армирование стен (см. ).

    Для этого используются:

    • Арматурные каркасы.
    • Стержни арматуры.
    • Арматурная сетка.
    • Железобетонные пилястры.

    Инструкция по усилению стены арматурной сеткой предлагает:

    • Устанавливать материал можно с одной или с двух сторон, зафиксировав сетку на ремонтируемый участок.
    • Предварительно сверлятся отверстия.
    • Сетка крепится сквозными шпильками или анкерными болтами, входящими в эти отверстия.
    • Наносится цементный раствор, не ниже марки М100.
    • Слой штукатурки наносится толщиной от 2 до 4 сантиметров.
    • Крепятся вспомогательные стержни диаметром 6 миллиметров, по высоте углов, опустив элементы примерно на 30 сантиметров, чтобы обеспечить их усиление.
    • При одностороннем креплении сетки анкера диаметром 8 миллиметров ставятся с шагом до 80 сантиметров.
    • При двустороннем размещении сетки, она крепится сквозными анкерами диаметром 12 миллиметров с шагом до 1,2 метра, сваркой или крепежом к металлическим сеткам.

    Как установить железобетонный пояс

    Стена из силикатного кирпича может быть усилена устройством железобетонного пояса.

    Его преимущества:

    • Экономия времени.
    • Меньшая цена.

    Недостаток:

    При использовании железобетонной обоймы должны учитываться такие технические характеристики, как:

    • Толщина изготовления конструкции от 4 до 12 сантиметров.
    • Бетонная смесь выбирается с мелким зерном не ниже 10 класса.
    • Поперечная арматура выбирается А240/AI класса, с шагом установки до 15 сантиметров.
    • Продольная арматура берется А240-А400/AI, AII, AIII класса.

    Для изготовления конструкции из железобетонной «рубашки» необходимо установить по всему периметру арматурную сетку, зафиксировав ее не кладке фиксаторами.

    Совет: Для укрепления кирпичной стены следует создать оболочку, которая превышает прочность самой стены в несколько раз.

    Показателями эффективности обоймы являются:

    • Состояние уложенной поверхности.
    • Прочность бетона.
    • Характер нагрузки.
    • Процент армирования.

    Этот вид конструкции часть нагрузки берет на себя, освобождая кладку.

    При изготовлении обоймы:

    • Слои до 4 сантиметров толщиной выполняются пневмобетонированием и торкретированием, а затем выполняется отделка штукатуркой.
    • Если слои имеют толщину до 12 сантиметров, обойма стены делается с использованием инвентарной опалубкой, монтируемой вокруг усиливаемой основы. Инвентарная опалубка устанавливается по всей высоте укрепляемого строения, чтобы защитить слой арматурного заполнения. В опалубке устраиваются инъекционные трубки, и в них подается мелкозернистая бетонная смесь.

    Особенности композиционной обоймы

    На фото представлено сооружение обоймы из композиционного сырья. Это один из наиболее результативных методов для усиления стен из кирпича, за счет использования высокопрочных волокон: угле- и стекловолокна.

    Они позволяют увеличить прочность:

    • На сжатие отвесных конструкций.
    • На сдвиг или срез перпендикулярных сечений.

    Технология проведения работ:

    • Подготовленная кирпичная кладка обрабатывается пропиткой.
    • Выполняется грунтовка для упрочнения поверхности.
    • Устанавливаются металлические каркасы.
    • Разбираются временные крепления.

    Совет: Времянки следует убирать после набора 50% прочности новой кладкой, величина которой указана в проекте.

    • Окрашиваются и штукатурятся простенки.

    Как сделать стальную конструкцию

    Монтаж стальной обоймы значительно повышает несущую способность здания.

    Для ее изготовления необходимо приобрести:

    • Стержни арматурные, диаметром 12 миллиметров.
    • Поперечные металлические полоски, сечение шириной до 6 сантиметров, толщиной – до 12 миллиметров.
    • Профильные уголки.
    • На растворе по углам площади, предназначенной для усиления, устанавливаются вертикальные уголки.

    • Крепятся полосы с шагом не более 50 сантиметров.
    • Продольные уголки выбираются длиной, равной высоте усиливаемой конструкции.
    • На уголки накладывается металлическая сетка, для улучшения прочности конструкции.
    • Цементный раствор должен быть толщиной до 3 сантиметров, чтобы защитить металл от коррозии.

    Совет: При отделке большой площади, процесс необходимо выполнять с использованием растворонасоса.

    Какие современные методы используются для улучшения прочности кирпичных стен

    Традиционные методы с применением композитных материалов и инъектирования, позволяющие быстро и эффективно усилить кирпичные стены, могут заменить инновационные способы проведения процесса.

    Его суть заключается в следующем:

    • В теле строительной конструкции пробуриваются отверстия.
    • В них под давлением закачиваются ремонтные составы, которыми могут быть:
    1. микроцементы;
    2. на эпоксидной смоле;
    3. на полиуретановой основе.
    • Инъекционная смесь заполняет существующие пустоты строительной конструкции, имеющиеся трещины, что предотвращает разрушение стены и обеспечивает надежную гидроизоляцию строения.

    Инъектирование стен позволяет:

    • Полностью укрепить кирпичную кладку.
    • Произвести структурное склеивание материала.
    • Защитить стены от вредного воздействия капиллярной влаги.

    При усилении композитными материалами:

    • На строительную конструкцию наклеиваются холсты (ленты или сетки) из высокопрочного материала, изготовленного на основе стекловолокна или углерода.
    • Клеем могут быть составы на цементной или эпоксидной основе.

    Усиление кладки, усиление проемов в кирпичных стенах должно быть выполнено полностью, чтобы восстановить абсолютно все поврежденные зоны. Очень важно своевременно проводить реконструкцию дома, чтобы не допустить полное разрушение стен. Любой метод, при правильном исполнении, усиливает кирпичную кладку, повышает устойчивость здания к нагрузкам, действующим деформациям и другим факторам. Все особенности проведения работ показывает видео в этой статье.

    При наличии в стенах дефектов, причины появления которых были рассмотрены выше, применяют различные способы их устранения; усиление простенков и столбов; ремонт и усиление перемычек; восстановление первоначального положения стен; увеличение жесткости стенового остова здания.

    Кроме того, возможны перекладка отдельных участков стены, повышение теплозащитных свойств и улучшение эстетических качеств стены.

    При наличии в стене трещин давнего происхождения, но без следов продолжающегося их раскрытия и удлинения, т. е. когда стена в целом не потеряла своей формы и несущей способности, такие трещины заделывают.

    При ширине трещин до 40 мм эту операцию выполняют путем нагнетания раствора с напором порядка 2,5 ат. Раствор для заделки щелей может иметь состав (цемент - вода) от 1: 10 до 1:1, что соответствуют плотности 1,065-1,470.

    Места расположения отверстий для нагнетания раствора выбирают в зависимости от расположения трещин на стене: на участках с вертикальными или наклонными трещинами их делают через 0,8-1,5 м, а на горизонтальных трещинах - 0,2-0,3 м.
    Иногда при заделке трещин в наиболее видных участках стены укладывают несколько кирпичей, что называется замком (рис. 105, а), а в длинных и широких трещинах устраивают замок с якорем из прокатного профиля, укрепляемого в стене анкерами.
    Если в стене обнаружены сквозные трещины в виде разрывов кладки в местах сопряжения наружных и внутренних стен или в наружных углах, для укрепления применяют металлические накладки из полосовой стали. Концы накладок загибают в сторону стены для лучшего сцепления с ней и фиксируют болтами, располагаемыми от трещины на расстоянии, равном примерно полутора толщинам стены (рис. 105, б, в, г). В более простых случаях при сравнительно небольшом протяжении и ширине трещины накладки можно крепить к стене ершами с одной стороны стены.

    Если стены отклоняются от вертикали, выправить их можно с помощью вертикальных накладок из прокатных профилей (швеллера № 12-16) с креплением их ершами (рис. 106, а).

    Рис. 105. Заделка трещин в стенах:
    а - простой замок и с якорем; б - двусторонняя металлическая накладка ра прямом участке стены (фасад и план); в -накладки в месте примыкания внутренней стены; г - то же, на углу здания; 1 - накладка из полосовой стали 50X10 мм; 2 - круглая сталь с винтовой нарезкой d=20-24 мм; 3 - то же, с нарезкой на двух концах

    Дефекты стен в виде выпучиваний, нарушений первоначальной формы устраняют путем накладки прокатных профилей с двух сторон стены в горизонтальном или вертикальном направлениях, называемых разгрузочными жесткими поясами.
    В случае устройства поясов в параллельных стенах здания их можно связать между собой тяжами, устраиваемыми в уровне конструкции пола для увеличения жесткости всего стенового остова (рис. 106, б).

    Помимо системы жестких накладок общее восстановление жесткости стенового остова, как пространственной конструктивной системы, производится с помощью предварительно напряженных поясов или тяжей из круглой арматурной стали " конструкции Н. М. Козлова (рис. 106, в, г). Пояса просты по устройству и очень эффективны. Тяжи диаметром 28-40 мм размещают на уровне тех перекрытий, где имеются трещины. На углах здания устанавливают уголки № 12-15 длиной около 1,5 м, к которым приваривают тяжи.

    Рис. 106. Выпрямление неисправных стен:

    а - жесткие накладки из прокатных профилей; б - крепление жестких накладок; в - восстановление жесткости стенового остова предварительно напряженными поясами; г - детали Устройства поясов; 1 - трещина в стене; 2 - уровень перекрытия; 3 -накладки из швеллеров № 12-16; 4 - болты крепления d=20-24 м; 5 - ерш; 6 - стягивающие тяжи d-28-40 мм; "--угловая накладка 120-150 длиной 1-1,5 м; 8 - натяжное устройство; I , II, I I I - контуры поясов

    В плане здания пояса должны образовывать замкнутые контуры, возможно более близкие к квадрату и не более чем с соотношением 1: 1,5. Длина поясов по каждой из стен может достигать 15-18 м. Предварительное напряжение поясов производят натяжными муфтами - с левой и правой резьбами, которые предусматривают обычно в средней части каждого участка периметра пояса. Усилие натяжения контролируют динамометрическим ключом в соответствии с расчетной величиной. Система напряженных поясов образует в стеновом остове сжимающие усилия, которые погашают растяжения и деформации, являющиеся следствием нарушения формы стенового остова.

    При укреплении стенового остова напряженными поясами уменьшается расход металла по сравнению с жесткими накладками. Конструкция напряженных поясов состоит из стандартизированных узлов, а работы на стройплощадке являются чисто монтажными. Небольшие сечения металлических поясов позволяют сохранить поверхность фасада, для чего все составные части поясов нужно помещать в заранее подготовленные борозды.

    Частичная перекладка стен может заключаться, как упоминалось, в устройстве замков для закрытия крупных трещин. Можно заменять внешний слой стены при его износе или отслоении облицовочных рядов, с креплением новых камней путем перевязки с существующей кладкой или с помощью анкеров (рис. 107, а, б).

    Рис. 107. Улучшение и перекладка стен:
    а - замена облицовки путем перевязки с существующей кладкой; б - то же, с помощью анкеров; в - перекладка отдельных простенков; г - перекладка участков стены; д, е - утепление углов со стороны помещения; 1 - старая штукатурка; 2 - рулонный гидроизоляционный материал; 3 - эффективный утеплитель; 4 - новая штукатурка

    Более сложным мероприятием является замена отдельных участков стены (чаще всего простенков) при их разрушении от перегрузки или для изменения размеров. В первом случае (без смены перекрытий в здании) над заменяемым местом вывешивают на временных стойках и балках участок стены и перекрытия. Потом заменяемую часть стены разбирают и выкладывают заново (рис. 107, в).

    Рис. 108. Усиление простенков и участков стен:

    а - железобетонная обойма (фасад, план и детали); б - то же, из прокатного металла; в - железобетонный сердечник; г - то же, металлический

    Во втором случае, когда все перекрытия решено разобрать, участки стены заменяют поэтажно без временных креплений после окончания монтажа нижележащего перекрытия (рис. 107, г).

    Усиление простенков производят с помощью железобетонных и металлических обойм - «рубашек». Железобетонные рубашки более эффективны и, когда возможно, следует применять их. Для небольшого усиления стен можно оштукатуривать их по стальной сетке с ячейками порядка 150x150 мм и сечением 4-6 мм.

    При соотношении сторон усиляемого простенка или столба более 1: 2,5 необходимо сквозное соединение усиливающих конструкций в середине таких опор. По данным В. К. Соколова, с помощью обойм несущую способность сечения можно повысить в 1,5- 2,5 раза.

    При небольших размерах простенков и необходимости значительно увеличить их нагрузку в нем устраивают сердечник из железобетона или в виде металлического профиля (рис. 108, в).

    Усилить колонны и столбы всех видов и из всех материалов можно такими же приемами (рис. 109, а, б), а также с применением распора, т. е. созданием напряжения в обойме (рис. 109, в).

    Металлические накладки по углам в этом решении делаются несколько длиннее расстояния между верхним и нижним упорами (около потолка и пола). Затем их сжимают с помощью болтов, чем достигается нужное предварительное напряжение конструкции, работающей на сжатие.

    Одновременно с усилением отдельных опор обычно усиливают их фундаменты, получая единое и взаимосвязанное конструктивное решение.

    Рис. 109. Усиление колонн:
    а - железобетонная обойма; б - то же, со спиральной арматурой: в - металлическая рубашка с распором (исходное и проектное положения); / - рабочая арматура d-12-16 мм; 1 - распределительная арматура d-6-10 мм; 3 - имеющаяся арматура; 4 - угловые накладки 60-80 им; 5 - упоры уголковых накладок 50-80 мм; 6 - стягивающие болты; 7 - полосовая сталь 50x5 мм

    Перемычки улучшают и усиливают при наличии в них незначительных трещин путем заделки последних. При больших деформациях (сквозных трещинах по всей высоте перемычки и нарушении ее нижней поверхности) их усиливают путем крепления металлическими уголками (рис. 110,а), введением сборных железобетонных перемычек (рис. 110,6) или прокатных металлических профилей, которые принимают на себя нагрузку перемычки. Если при укреплении перемычки уголками трещины находятся в средней ее части, уголки крепят с помощью тяжей из полосовой или арматурной стали к простенкам на анкерах (рис. 110, в).

    Для повышения теплоизолирующей способности стен из кирпича делают снаружи расшивку швов, что повышает теплоустойчивость стен до 20%- Лучшие результаты (до 30%) можно получит облицовкой стен кирпичом, керамическими и бетонными плитами.

    Стены можно утеплить и изнутри здания напылением раствора с минеральной ватой или установкой плитных утеплителей (пенопласт, сти- ропор, полистирол, минеральная вата и т. п.) по слою рулонного материала. По данным Академии коммунального хозяйства, синтетические материалы повышают температуру внутренней поверхности стены примерно на 2-3° на каждый сантиметр толщины накладываемого слоя.

    Особое внимание нужно уделять наружным углам стенового остова. Нередко повышение теплозащитных свойств стен заключается именно в утеплении их углов (см. рис. 107, д).

    Улучшать внешний вид стен необходимо при выветривании раствора и самой кладки в отдельных местах при заметных переделках и перекладках или случайных изменениях. Технические способы улучшения эстетических качеств стен описаны в § 41 и показаны на рис. 107.



    Понравилась статья? Поделитесь с друзьями!