Химические методы умягчения воды. Фильтры для умягчения воды — обзор и рекомендации

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное

учреждение «Юго-Западный государственный университет»

Кафедра общей и неорганической химии

УТВЕРЖДАЮ Первый проректор – проректор по учебной работе

Е.А. Кудряшов «___»____________2012 г.

ЖЁСТКОСТЬ ВОДЫ И МЕТОДЫ ЕЁ УМЯГЧЕНИЯ

Методические указания к самостоятельной работе по дисциплине ""Химия"" для студентов нехимических специальностей

УДК 546 Составители: И. В. Савенкова, Ф.Ф. Ниязи

Рецензент Кандидат химических наук, доцент В. С. Мальцева

Жёсткость воды и методы её умягчения: Методические указания к самостоятельной работе по дисциплине ""Химия"" для студентов нехимических специальностей / Юго-Зап. гос. ун-т; Сост.: И. В. Савенкова, Ф.Ф. Ниязи Курск, 2012. 18с.

Излагаются методические материалы по оценке жёсткости воды и методам её умягчения, представлены лабораторная работа по данной теме и индивидуальные задания для студентов.

Предназначены для студентов нехимических специальностей.

ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ ПОДГОТОВКИ

1. Жёсткость воды и причины её образования. Единицы измерения жёсткости.

2. Виды жёсткости: временная, постоянная, общая, карбонатная и некарбонатная. Какими ионами они обусловлены?

3. Влияние жёсткости на рН воды.

4. Негативные последствия использования жёсткой воды в промышленности.

5. Основные методы умягчения промышленных вод. Чем руководствуются при их выборе?

6. Термический метод умягчения воды. Его достоинства и недостатки.

7. Реагентные методы, используемые для умягчения воды. Какие химические процессы происходят при умягчении воды методом: а) известкования; б) фосфатирования; в) содовым; г) добавлением гидроксида натрия?

8. Умягчение воды ионнообменным методом.

9. Ионообменная емкость катионита и анионита. В каких единицах она выражается? От каких факторов зависит?

10. Почему для регенерации катионита его промывают раствором хлористого натрия, а затем водой? Можно ли регенерировать катионит, промывая его раствором хлористого магния?

Библиографический список

1. Коровин Н.В. Общая химия. М.: Высш. шк., 2007 г.

2. Задачи и упражнения по общей химии/ Под ред. Н.В. Коровина. М.: Высш. шк., 2004 г.

3. Глинка Н.Л. Задачи и упражнения по общей химии. М.: Интеграл-прес, 2002 г.

4. Ахметов Н.С. Общая и неорганическая химия. М.: Высш. шк.,

Природная вода является сложной многокомпонентной системой, в которой содержатся в растворенном виде различные органические и неорганические соединения.

1) Главнейшие ионы.

Катионы: Na+ , Ca2+ , Mg2+ , K+ (реже Fe2+ , Fe3+ , Mn2+ ); Анионы: HCO3 - , SO4 2- , Cl- , CO3 2- (реже HSiO3 - , SO3 2- , S2 O3 2- ).

2) Растворенные газы.

В воде чаще всего растворены: углекислый газ, кислород, азот, сероводород, метан и др.

3) Биогенные вещества.

К биогенным веществам относятся те соединения, которые возникают в связи с жизнедеятельностью организмов. В их состав входят различные формы азота (аммиачный, нитритный, нитратный), фосфора, кремния, железа.

4) Микроэлементы.

К ним относятся элементы, которые содержатся в воде в количествах меньших 10-3 %.

5) Органические вещества.

Это могут быть различного рода растительные и животные организмы, микроорганизмы и продукты их взаимодействия с окружающей средой.

Природные воды сильно различаются по общему содержанию растворенных солей и по относительному содержанию различных ионов. Это различие может существенно влиять на свойства воды и,

следовательно, на применение ее в различных областях. Специфические свойства воде придают ионы Ca2+ и Mg2+ ,

присутствие которых определяют жесткость воды .

Жесткость воды – один из технологических показателей, принятых для характеристики состава и качества природных вод,

который характеризуется содержанием числа миллимолей эквивалентов ионов Са2+ и Мg2+ в 1 л воды. Один миллиэквивалент жесткости отвечает содержанию в воде 20,04 мг/л Са2+ или 12,16мг/л Mg2+ , что соответствует значению эквивалентной массы этих ионов.

Эти ионы появляются в природных водах в результате

взаимодействия с известняками или в результате растворения гипса. CaCO3 + H2 O + CO2 = Ca2+ + 2HCO3 -

Жёсткость природных вод колеблется в широких пределах. Вода, жёсткость которой менее 4 мэкв/л ионов Са2+ и Мg2+ , характеризуется как мягкая, от 4 до 8 – умеренно жёсткая , от 8 до 12

– жёсткая и более 12 мэкв/л – очень жёсткая .

Например, наиболее мягкой является вода атмосферных осадков (0,07-0,1мэкв/л), а жесткость океанской воды составляет 130 мэкв/л.

Различают несколько видов жёсткости: общую, временную, постоянную, карбонатную и некарбонатную.

Общей жёсткостью называется суммарная концентрация ионов Ca2+ , Mg2+ в воде, выраженная в мэкв/л.

Постоянная жёсткость - часть общей жёсткости, остающаяся после кипячения воды при атмосферном давлении в течение определённого времени.

Временная жёсткость – часть общей жёсткости, удаляющаяся кипячением воды при атмосферном давлении в течение определённого времени. Она равна разности между общей и постоянной жёсткостью.

Карбонатная жёсткость – часть общей жёсткости,

эквивалентная концентрации гидрокарбонатов кальция и магния. Некарбонатная жёсткость - часть общей жёсткости, равная

разности между общей и карбонатной жёсткостью.

Пример 1. В 5 м 3 воды содержится 250 г ионов кальция и 135 г ионов магния. Определить общую жесткость воды.

Решение . Найдем содержание ионов кальция и магния (в мг/л) в

250 1000 / 5 1000 = 50 (мг/л) ионов Са2+

и 135 1000 / 5 1000 = 27 (мг/л) ионов Mg 2+ .

1 мэкв жесткости отвечает содержанию 20,04 мг/л ионов. Са2+ или 12,16 мг/л ионов Мg2+ ; следовательно,

Ж = 50/20,04 + 27/12,16 = 4,715 (мэкв/л).

Ответ : вода умеренно жесткая.

Пример 2 . Вычислить карбонатную жёсткость воды, зная, что на титрование 100мл этой воды, содержащей гидрокарбонат кальция,

потребовалось 6,25мл, 0,08 н раствора НС1. Привести уравнение соответствующей реакции.

Решение : Задачу решаем используя закон эквивалентов для растворов.

Вычислим нормальность раствора гидрокарбоната кальция: N1 = 6,25 0,08 ⁄ 100 = 0,005 н

Следовательно, в 1 л воды содержится 0,005 1000 = 5 мэкв гидрокарбоната кальция.

Ответ: Ж=5мэкв/л

Ионы Ca2+ и Mg2+ не представляют опасности, но значительное их содержание в воде приводит к перерасходу мыла, ухудшению вкуса продуктов и т.д. При нагревании и, особенно при испарении воды соли этих металлов образуют слой накипи, снижающий коэффициенты теплопередачи в охлаждающих и нагревающих системах, что является крайне нежелательным.

Использование природной воды в технике требует ее предварительной очистки. Процесс, приводящий к снижению жёсткости воды, называется умягчением воды .

Способы умягчения воды можно разделить на три основные группы:

1) термическое умягчение воды; 2) реагентные методы умягчения; 3) умягчение воды методом ионного обмена.

1. Термический способ умягчения воды

Временная или карбонатная жесткость , устраняется нагреванием воды до 70-80°С и последующей фильтрацией. При нагревании протекают реакции:

Са(НСОз)2 = СаСО3 + СО2 + H2 O

Mg(HCО3 )2 = MgCО3 + CO2 + H2 О

Однако полностью устранить карбонатную жёсткость термическим методом нельзя, т. к. СаСО3 , хотя и незначительно, но растворим в воде. Растворимость МgСО3 достаточно высока, поэтому гидрокарбонат магния сразу же взаимодействует с водой, т.е.

наблюдается процесс гидролиза и вместо МgСО3 , в осадок выпадает

Mg(ОН)2:

MgC03 + H2 О =Мg(ОН)2 + СO2

Термическое умягчение воды связано со значительными затратами, поэтому применяется лишь в том случае, когда вода должна подвергаться соответствующему нагреву.

2. Реагентное умягчение воды.

Реагентное умягчение воды состоит в том, что при введении в

воду специальных реагентов катионы кальция и магния, растворенные в ней, переходят в практически нерастворимые соединения, которые выпадают в осадок. В зависимости от используемых реагентов методы водоумягчения классифицируют на известковый, известково-содовый, щелочной, фосфатный и бариевый.

2.1.Известковый метод.

Данный метод используют для частичного устранения из воды карбонатной жесткости.

При введении в воду гашёной извести в виде известкового молока гидрокарбонат кальция соли осаждаются в виде карбонатов:

Са(НСОз)2 + Са(ОН)2 = 2СаСОз + 2Н2 О, Дальнейшее введение в воду извести приводит к гидролизу

магниевых солей и образованию малорастворимого гидроксида магния, который при рН≥ 10,2…10,3 выпадает в осадок:

Mg(HCO3 )2 + Ca(OH)2 = MgCО3 + СаСО3 + CO2 + 2H2 О MgCО3 + Ca(OH)2 = Mg(OH)2 + CaCO3 ,

Известкованием устраняют из воды и некарбонатную магниевую жесткость при условии, что рН воды будет не ниже 10,2 (при других значениях рН воды гидроксид магния не выпадает в осадок):

MgSO4 + Ca(OH)2 = Mg(OH)2 + CaSO4

MgCl2 + Ca(OH)2 = Mg(OH)2 + CaCl2

Приведенные уравнения показывают, что магниевая жесткость устраняется, но значение общей жесткости остается неизменным, так как магниевая жесткость заменяется кальциевой, некарбонатной. Поэтому данный способ можно применять только для умягчения воды с большим значением карбонатной жесткости.

Устранение временной жесткости нейтрализацией гидрокарбонатов гашеной известью применяется крайне редко, т. к. а) мелкодисперсные осадки плохо осаждаются, и требуется укрупнение частиц; б) большое количество мелкодисперсных органических веществ препятствует образованию осадка.

2.2.Известково-содовый

Этот метод используют для одновременного понижения карбонатной и некарбонатной жесткости, когда не требуется глубокого умягчения воды.

Химизм процесса описывается реакциями: MgS04 + Na2 СОз = MgСОз↓ + Na2 SO4 CaCl2 + Na2 CO3 = СаСОз↓ + 2NaCl

(Уравнения реакций устранения карбонатной жесткости с помощью извести смотри выше в п.2.1.).

После добавления в воду реагентов происходит мгновенное образование коллоидных соединений СаСОз и Mg(OH)2 , однако их переход от коллоидного состояния в грубодисперсное, т.е. в то состояние, при котором они выпадают в осадок, занимает длительное время. Поэтому часто известково-содовый способ сочетают с термическим. Например, такое сочетание используют при умягчении воды, которая используется для питания котлов низкого давления, для подпитки теплосети и т.д.

Глубина умягчения воды при известково-содовом методе соответственно равна: без подогрева воды жесткость понижается до

1…2мэкв/л;

при подогреве воды до 80…90о С жесткость понижается до

0,2…0,4мэкв/л.

2.3. Щелочной метод.

Данный метод умягчения воды описывается следующими уравнениями химических реакций:

Ca(HCO3 )2 + 2NaOH = CaCO3 ↓ + Na2 CO3 + H2 O

Mg(HCO3 )2 + 2NaOH = Mg(OH)2 ↓ + Na2 CO3 + H2 O + CO2

CaSO4 + Na2 CO3 = CaCO3 ↓ + Na2 SO4

CaCl2 + Na2 CO3 = CaCO3 ↓ + 2NaCl

CO2 +NaOH = Na2 CO3 + H2 O

MgSO4 + 2NaOH = Mg(OH)2 ↓ + Na2 SO4

MgCl2 + 2NaOH = Mg(OH)2 ↓ + 2NaCl

Из приведенных уравнений реакций следует:

1) гидроксид натрия (NaOH) в процессе умягчения воды расходуется на устранение карбонатной жесткости и нейтрализацию углекислого газа, растворенного в воде.

2) сода (Na 2 CO3 ), образующаяся при распаде гидрокарбонатов и нейтрализации углекислого газа, используется для удаления некарбонатной жесткости.

Глубина умягчения воды при щелочном методе такая же, как и при известково-содовом, т.е. значение остаточной жесткости практически около 1мэкв/л, а при подогреве умягчаемой воды –

0,2…0,4мэкв/л.

2.4.Фосфатный метод.

Данный метод умягчения воды является наиболее эффективным реагентным методом. Химизм процесса умягчения воды фосфатом натрия описывается следующими уравнениями реакций:

3CaS04 + 2Na3 P04 = Саз (РО4 )2 ↓ + Na2 SO4 3MgCl2 + 2Na3 PO4 = Mg3 (PO4 )2 ↓ + 6NaCl 3Ca(HCO3 )2 + 2Na3 PO4 = Ca3 (PO4 )2 ↓ + 6NaHCO3 3Mg(HCO3 )2 + 2Na3 PO4 = Mg3 (PO4 )2 ↓+ 6NaHCO3

Как видно из приведенных уравнений реакций, сущность метода заключается в образовании кальциевых и магниевых солей фосфорной кислоты, которые обладают малой растворимостью в воде и поэтому достаточно полно выпадают в осадок.

Фосфатное умягчение обычно осуществляют при подогреве воды до 105…1500 С, достигая уменьшения жесткости до 0,02...0,03мэкв/л. Из-за высокой стоимости фосфата натрия фосфатный метод обычно используют для доумягчения воды, предварительно умягченной известью и содой. Данный метод используется, например, для подготовки питательной воды для котлов среднего и высокого давления (588…980МПа).

2.5.Бариевый метод.

Умягчение воды основано на введении в нее гидроксида бария или алюмината бария и образовании практически нерастворимых соединений кальция и магния, а также сульфата бария. Химизм процесса описывается следующими уравнениями реакций:

CaSO4 + Ba(OH)2 = Ca(OH)2 ↓ + BaSO4 ↓

CaCl2 + BaAl2 O4 = BaCl2 + CaAl2 O4 ↓

Ca(HCO3 )2 + BaAl2 O4 = CaAl2 O4 ↓ + BaCO3 ↓ + H2 O + CO2

(Аналогичные уравнения реакций можно записать и для солей магния).

Бариевый метод умягчения воды очень дорогой, а бариевые соли ядовиты, поэтому его целесообразно применять при частичном обессоливании воды за счет извлечения сульфатов.

Пример 3. Жесткость воды равна 5,4 мэкв ионов кальция в 1 л воды. Какое количество фосфата натрия Na3 P04 необходимо взять, чтобы понизить жесткость 1 т воды практически до нуля.

Решение : Задачу решаем, используя формулу

Ж = m / Э V, (1)

где m – масса вещества, обусловливающего жёсткость воды, или применяемого для устранения жёсткости воды, г;

Э – эквивалентная масса этого вещества; г/моль; V – объём воды, л.

Э (Na3 PO4 ) = М(Na3 PO4 ) / n В,

где n – количество ионов металла; В – валентность металла.

Э(Na3 PO4 ) = 164 / 3 =54,7 (г/моль)

Из уравнения (1) выразим массу

m = Ж Э V = 5,4 54,7 1000 = 295,38 (г) Ответ: m = 295,38г.

3. Методы ионного обмена

Катионитовый метод умягчения воды основан на способности некоторых практически нерастворимых в воде веществ, называемых катионитами , обменивать содержащиеся в них активные группы катионов (натрия, водорода и др.), на катионы кальция или магния, находящиеся в воде.

В настоящее время большое распространение получили ионообменные смолы, которые получают на основе синтетических полимеров. Ионнообменные смолы – это сетчатые, трёхмерные полимеры, не растворяющиеся в воде, но ограниченно набухающие в ней и содержащие групы, способные к обмену ионов

Умягчаемую воду фильтруют через слой катионита, при этом катионы кальция и магния из воды переходят в катионит, а в воду

Многие слышали об умягчении жесткой воды и стараются обязательно заказать себе для водоподготовки умягчитель.Так ли это важно и нужно?

Физиологическая норма жесткости указана в СанПиНе 2.1.4.1116-02 на бутылированную воду и составляет от 1,5 до 3,5 ммоль/л. Для бытовой техники требуется еще более мягкая воды, чтобы не образовывалась накипь.

Различают два вида жёсткости:
Карбонатная (временная) - называют потому, что она устраняется кипячением.
Некарбонатную (постоянную) - называют потому, что при кипячении жёсткость не устраняется, но при выпаривании на стенках сосуда образуется в виде накипи светло-белый малорастворимый осадок типа сульфата кальция или магния.Соли MgCl2, CaCl2, MgSO4, содержащиеся в воде с постоянной жёсткостью, вызывают коррозию стальных конструкций и ускоряют износ водонагревательного и отопительного оборудования.При использовании для водона-гревательного оборудования и отопительной техники жёсткой воды образуется накипь из карбонатов кальция и магния, гипса и других солей.Образование накипи затрудняет нагревание воды, вызывает увеличение расхода электричества и топлива.

В жёсткой воде плохо развариваются мясо, овощи, крупа, плохо заваривается чай. При стирке тканей (как и при мытье головы) образующиеся нерастворимые соединения осаждаются на поверхности нитей и постепенно разрушают волокна.

Умягчение воды - процесс удаления из неё катионов жёсткости, т.е. кальция и магния.

Термический метод основан на нагревании воды до температуры выше точки кипения, её дистилляцией или вымораживанием с целью устранения карбоната кальция и карбоната магния. Вследствие применения указанного метода остаточная жёсткость воды составляет не более 0,7 ммоль/л. Поэтому термический метод применяется для технических нужд, в частности при использовании вод,идущих на питание котлов низкого давления, а также в сочетании с реагентными методами.

При умягчении воды реагентными методами используют реагенты, образующие при взаимодействии с кальцием и магнием малорастворимые соединения с последующим их отделением в осветителях, тонкослойных отстойниках и осветительных фильтрах. В качестве реагентов-осадителей используют известь, кальцинированную соду, гидрооксиды натрия и бария и другие вещества. Выбор реагентов зависит от качества исходной воды и условий её дальнейшего применения. При применении реагентных методов остаточная жёсткость воды составит до 0,7 мг/л. В соответствии с рекомендациями «Строительных норм и правил» (СН и П) реагентные методы в основном используются для умягчения поверхностных вод, когда одновременно требуется и осветление воды.

Умягчение воды основанное на разных скоростях диффузии этих веществ через полупроницаемую мембрану , разделяющую концентрированный и разбавленный растворы. Умягчение воды методом диализа осуществляется в мембранных аппаратах с нитро- и ацетатцеллюлозными плёночными мембранами. В результате применения данного метода остаточная жёсткость воды составит до 0,01 мг/л и ниже. Отрицательной стороной метода диализа является высокая себестоимость мембранных аппаратов.

Магнитная обработка воды - распространена для борьбы с образованием накипи. Сущность метода состоит в том, что при пересечение водой магнитных силовых линий образователи накипи выделяются не на поверхности нагрева, а в массе воды. Образующиеся рыхлые осадки (шлам) удаляют при продувке.

Наибольшее практическое применение получил ионообменный метод умягчения воды. Сущность ионообменного метода заключается в способности ионообменных материалов (ионитов) поглощать из воды положительные или отрица-тельные ионы в обмен на эквивалентное количество ионов ионита. В зависимости от состава существуют минеральные и органические катиониты, которые, в свою очередь, разделяются на вещества естественного и искусственного происхождения. В технологии подготовки воды широко применяют органические катиониты искусственного происхождения, так называемые ионообменные смолы. Качество ионообменных смол характеризуется их физическими свойствами, химической и термической стойкостью, рабочей ёмкостью и др.В установках умягчения воды использует ионообменные смолы, основанные на применении катионита в Na-форме и анионита в Cl-форме, т.е. использует метод натрий - хлор-ионирования. Указанный метод состоит из следующих стадий: натрий-катионирования и хлор-катионирования. На стадии натрий-катионирования происходит замещение ионов кальция и магния, придающих воде жёсткость, на ионы натрия.

В результате обрабатываемая вода умягчается, а кальций и магний образуют нерастворимый полимер. При пропуске натрий-катионированной воды через хлор-аноион протекают реакции обмена анионов, содержащихся в Na- катионированной воде, на ионы хлора и щёлочность обрабатываемой воды снижается. Для восстановления свойств ионообменной смолы (регенерации) используется раствор поваренной соли. Таким образом, достигается глубокое умягчение воды (до 0,03 … 0,05 ммоль/л). При применении метода натрий - хлор-ионирования расходуется только один реагент - поваренная соль, не требуется антикоррозийной защиты оборудования, трубопроводов и специальной арматуры, уменьшается количество оборудования, упрощается контроль работы и эксплуатации водоумягчительной установки. В результате повышается надёжность и уменьшается стоимость установки для умягчения воды. Только пить постоянно такую умягченную

Под умягчением воды подразумевается процесс удаления из нее катионов жесткости, т.е. Са и Мg. Умягчение воды осуществляется следующими методами:

1) термическое умягчение, основанное на нагревании воды, ее дистилляции или вымораживанием;

2) реагентное, в котором находящиеся в воде ионы жесткости, связывают различными реагентами в практически нерастворимые соединения;

3) ионным обменом, основанным на фильтровании умягчаемой воды через специальные материалы, обменивающие входящие в их состав ионы натрия или водорода на катионы кальция и магния;

4) диализ;

5) комбинированный, представляющий различные сочетания перечисленных методов.

Выбор метода умягчения воды определяется ее качеством, необходимой глубиной умягчения и технико-экономическими соображениями.

Термический метод умягчения воды.

Целесообразно применять при использовании карбонатных вод, идущих на питание котлов низкого давления, а также в сочетании с реагентными методами умягчения воды. Он основан на смещении углекислотного равновесия при нагревании воды в сторону образования карбоната кальция

Са(НСО 3) 2 → СаСО 3 ↓+СО 2 + Н 2 О

Равновесие смещается за счет понижения растворимости СО 2 , вызываемого повышением температуры и давления. Кипячением можно полностью удалить СО 2 и тем самым значительно снизить карбонатную жесткость. Кроме того, снижается жесткость, определяемая сульфатом кальция. Однако, полностью удалить указанную жесткость не удается, поскольку карбонат кальция все же растворим в воде (18 мг/л). Применяется для этого метода – термоумягчитель. Время пребывания воды в нем 30-45 минут.

Реагентные методы умягчения.

Основаны на обработке воды реагентами, образующими с кальцием и магнием малорастворимые соединения Мg(ОН) 2 , СаСО 3 , Са 3 (РО 4) 2 и другие, с последующим их отделением в осветлителях. В качестве реагентов используется известь, кальцинированная сода, гидроксиды натрия, бария и другие вещества.

Умягчение воды известкованием применяют при высокой карбонатной и низкой некарбонатной жесткости. В качестве реагента используют известь, которую вводят в виде суспензии в предварительно подогретую воду. Растворяясь, известь обогащает воду ОН - и Са +2 ионами, что приводит к связыванию растворимого в воде СО 2 с образованием СО 3 -2 и переходу НСО 3 в СО 2 .

СО 2 + 2 ОН - →СО 3 -2 + Н 2 О; НСО3 - +ОН - → СО 3 –2 + Н 2 О

Повышение в обрабатываемой воде концентрации СО 3 –2 и присутствие в ней ионовСа +2 с учетом введенных с известью, приводит к осаждению СаСО 3

Са +2 + СО 3 –2 → СаСО 3 ↓.

Для ускорения процесса одновременно с известкованием применяют коагулирование.

Дозу извести определяют по формуле:

Д и = 28([СО 2 ] /22 +2 Ж к - [ Са +2 ]/20 +Д к /е к + 0.5)

Д к – доза коагулянта, е –эквивалентная масса активного вещества коагулянта,

Выражение Д к /е к – берут со знаком -, если коагулянт вводится ранее извести и +, если совместно или после.

Более глубокое умягчение воды может быть достигнуто ее подогревом, добавлением избытка реагента - осадителя и созданием контакта умягчаемой воды с ранее образовавшимся осадком.

Фосфатирование применяют для доумягчения воды. Остаточная жесткость снижается до 0.02-0.03 мг*экв /л. Фосфатированием достигается также большая стабильность воды, снижение ее коррозионного действия на металлические трубопроводы и предупреждаются отложения карбонатов на внутренней поверхности стенок труб. В качестве фосфатирующего реагента используется гексаметафосфат натрия, триполифосфат натрия. Фосфатный метод умягчения при использовании тринатрийфосфата является наиболее эффективным реагентным методом. Химизм процесса описывается уравнением:

3Са(НСО 3) 2 /3 Мg(НСО 3) 2 + 2 Nа 3 РО 4 = Са 3 (РО 4) 2 / Мg 3 (РО 4) 2 +6 NаНСО 3 .

Фосфатное умягчение осуществляется при подогреве воды до 105 –150 0 С. Образующиеся осадки Са 3 (РО 4) 2 и Мg 3 (РО 4) 2 хорошо адсорбируют их умягченной воды коллоиды и кремниевую кислоту, поэтому этот метод применяется для подготовки питательной воды для котлов среднего и высокого давления.

Умягчение воды диализом.

Диализ – метод разделения растворенных веществ, значительно отличающихся молекулярными массами. Он основан на разных скоростях диффузии этих веществ через полупроницаемую мембрану, разделяющую концентрированные и разбавленные растворы. Диализ осуществляется в мембранных аппаратах с нитро - и ацетатцеллюлозными мембранами. Эффективность полупроницаемой мембраны определяется высокими значениями селективности и водопроницаемости, которые она должна сохранять в течение продолжительного времени работы.

Магнитная обработка воды.

В настоящее время для борьбы с накипеобразованием и инкрустацией успешно применяют магнитную обработку воды. Ее суть заключается в действии магнитного поля на ионы солей, растворимых в воде. Под влиянием магнитного поля происходит поляризация и деформация ионов, сопровождающееся уменьшением их гидратации, повышающей вероятность их сближения и образование центров кристаллизации. Сущность метода состоит в том, что при пересечении водой магнитных силовых линий, накипеобразователи выделяются не на поверхности нагрева, а в массе воды. Образующиеся рыхлые осадки удаляют при продувке.

Умягчение воды катионированием.

Сущность ионного обмена заключается в способности ионитов поглощать из воды положительные и отрицательные ионы в обмен на эквивалентное количество ионов ионита. Процесс водообработки методом ионного обмена, в результате которого происходит обмен катионов – называют катионированием.

Катиониты в воде разбухают, увеличиваются в объеме. Энергия вхождения в катионит различных катионов по величине их динамической активности может быть охарактеризована следующим рядом:

Nа < NН 4+ < К + < Мg +2 < Са +2 < Аl +3

Е р = (Q* Ж и)/(а *h к), где Ж и – жесткость воды; Q – количество умягченной воды, м 3 ;

а – площадь катионитового фильтра, м 2 ; h к – высота слоя катионита, м.

Длительность работы фильтра определяется по формуле:

Т к = Е р * h к /V к *Ж и. где V к – скорость фильтрования воды.

В технике подготовки воды применяют органические катиониты. Они содержат функциональные химические активные группы, Н + которых способны замещаться другими катионами: четвертичные амины NН 3 ОН, сульфогруппы НSО 3 , карбоксильные группы СООН. Группа НSО 3 обладает сильнокислотными, а СООН – слабокислотными свойствами. В зависимости от содержания функциональных групп катиониты делят на слабокислотные и сильнокислотные. Сильнокислотные обменивают катионы в щелочной, нейтральной и кислой среде, слабокислотные – только в щелочной среде. Качество катионитов характеризуется их физическими свойствами, химической и термической стойкостью, рабочей обменной емкостью. Фракционный состав характеризует эксплуатационные свойства катионита. Рабочая обменная емкость зависит от вида извлекаемых катионов, соотношения солей в умягченной воде, рН, высоты слоя катионита, объема фильтра, режима эксплуатации, удельного расхода регенерирующего реагента.

Натрийкатионирование.

Этот метод применяется для умягчения воды с содержанием взвешенных веществ н/б 8 мг/л и цветности н/б 30 0 .Жесткость воды снижается при одноступенчатом катионировании до 0.05 –0.1, при двухступенчатом – до 0.01 мг*экв /л. Процесс натрийкатионирования описывается следующими уравнениями:

2 Nа[К] + Са(НСО 3) 2 / Мg(НСО 3) 2 ↔Са[К] 2 / Мg[К] 2 +2 NаНСО 3

2 Nа[К] + СаСl 2 / Мg Сl 2 ↔Са[К] 2 / Мg[К] 2 + 2 NаСl, где [К] – нерастворимая матрица полимера.

После истощения рабочей обменной емкости катионита он теряет способность умягчать воду и его необходимо регенерировать.

Процесс умягчения воды на катионитовых фильтрах состоит из следующих операций:

Фильтрование воды через слой катионита до момента достижения предельно допустимой жесткости в фильтрате;

Взрыхление слоя катионита восходящим потоком воды;

Спуска водяной подушки во избежание разбавления регенерационного раствора;

Регенерация катионита посредством фильтрования соответствующего раствора;

Отмывка катионита.

Выбор метода диктуется требованиями, предъявляемыми к умягченной воде, Свойствами исходной воды и технико-экономическими соображениями. Регенерация осуществляется 5% раствором хлористого натрия в количестве 1.2 м 3 раствора на 1 м 3 смолы, затем остаточное количество в виде 8% раствора. Процесс регенерации описывается следующей реакцией:

Са[К] 2 / Мg[К] 2 + 2 NаСl↔2 Nа[К] + СаСl 2 / Мg Сl 2

Хлористый натрий применяется из-за его доступности, дешевизны, а также вследствие того, что получают при этом хорошо растворимые соли СаСl 2 и МgСl 2 , легко удаляемые с регенерационным раствором и водой.

Водород-натрийкатионитовое умягчение воды.

Обработка воды Н-катионированием основана на фильтрации ее через слой катионита, содержащего в качестве обменных ионов водород.

2 Н[К] + Са(НСО 3) 2 / Мg(НСО 3) 2 ↔Са[К] 2 / Мg[К] 2 +2Н 2 О +СО 2

2 Н[К] + NаСl↔2 Nа[К] + НСl; 2 Н[К] +Nа 2 SО 4 ↔2 Nа[К] +Н 2 SО 4

При Н-катионировании воды значительно снижается ее рН из –за кислот, образующихся в фильтрате. Выделяющийся при Н-катионировании СО2 можно удалить дегазацией и в растворе останутся минеральные кислоты в количествах, эквивалентных содержанию SО 4 -2 и Сl - в исходной воде. Из приведенных реакций видно, что щелочность воды в процессе ионного обмена не изменяется. Следовательно, пропорционально смешивая кислый фильтрат после Н-катионитовых фильтров со щелочным фильтратом после Nа – катионитовых фильтров можно получить умягченную воду с различной щелочностью. В этом заключается сущность и преимущества Н- Nа – катионирования. Применяют параллельное, последовательное и смешанное Н- Nа – катионирования. При параллельном – 1 часть воды идет через Nа – катионитовый фильтр, другая – через Н-катионитовый. Образующиеся воды смешивают в таких пропорциях, чтобы щелочность не превышала 0.4 мг*экв/л. При последовательном – часть воды пропускают через Н-катионитовый, затем смешивают с остальной водой и подают на Nа – катионитовый фильтр. Это позволяет полнее использовать обменную емкость Н-катионита и снизить расход кислоты на регенерацию. Смешанное катионирование осуществляется в одном фильтре, загруженном вверху - Н-катионитом, внизу - Nа – катионитом.

Высокий уровень жесткости провоцирует образование накипи, ухудшает эффективность моющих средств. В таких неблагоприятных условиях возрастает риск повреждения функциональных компонентов отопительного оборудования, иной техники. Увеличиваются эксплуатационные расходы, затраты на выполнение санитарно-гигиенических правил.

Современные производители предлагают разные способы умягчения воды и соответствующие комплекты оборудования. Выбрать оптимальный вариант будет не сложно после ознакомления с данной публикацией. Здесь есть полезные данные, которые помогут недорого и быстро реализовать проект.

Основные определения

Общий уровень жесткости определяется, как сумма постоянной и временной компоненты. Как правило, первая часть имеет небольшое практическое значение, поэтому ее можно исключить из обзора. Вторая определяется концентрацией катионов магния и кальция. Эти химические вещества при нагреве преобразуются в нерастворимый осадок – накипь.

Именно они засоряют технические протоки, что сопровождается ухудшением производительности котлов. Такие образования отличаются пористостью, низкой теплопроводностью. При накоплении на поверхности ТЭНа этот слой блокирует нормальный отвод тепла. Если не применить эффективный способ умягчения жесткой воды, стиральная машина или другая техника с нагревательным элементом будет выведена из строя из-за накипи.

На практике решают вопросы уменьшения уровня жесткости, либо полное устранение вредных явлений. Второй вариант лучше! Он предполагает надежную защиту дорогих изделий, эффективную профилактику с предотвращением аварийных ситуаций.

Способ 1: Нагрев

Принцип действия этих способов умягчения воды понятен из общего определения. Каждый человек знает, что при кипячении (нагреве) на стенках чайника активно формируется слой накипи. После завершения процедуры жесткость будет снижена.

Теоретическая простота способа является единственным преимуществом. Детальное изучение вопроса позволяет выявить следующие недостатки:

  • длительность процесса;
  • небольшое количество жидкости, которое можно обработать в бытовых условиях;
  • значительные затраты на электроэнергию, газ, другие виды топлива.

Следует не забывать, что на финишном этапе приходится удалять прочную накипь. Это – трудоемкие рабочие операции, которые способны испортить рабочую емкость.

Способ 2: Обработка электромагнитным полем

Из приведенных описаний можно сделать промежуточный вывод. Для удаления вредных соединений с применением химических средств, ионным обменом, кипячением и мембранной фильтрацией приходится решать сложные инженерные задачи. Об этом будет написано ниже. Соответствующим образом увеличиваются затраты. Полифосфатные соединения действуют эффективнее. Они стоят недорого, но надежно блокируют негативный процесс. Метод можно признать идеальным, если бы не загрязнение жидкости.

В технологии электромагнитной обработки нет перечисленных недостатков. Воздействие сильным полем изменяет форму частиц накипи. Созданные игольчатые выступы не позволяют им соединятся в крупные фракции. Этим блокируется процесс образования накипи.

Чтобы получить поле оптимальной мощности и конфигурации применяют высокочастотный генератор электромагнитных колебаний. Он работает по специальному алгоритму, который не вызывает эффект «привыкания». Снижение положительного воздействия наблюдается при работе с постоянными магнитами.

В ходе изучения актуальных предложений рынка следует обратить внимание на современные качественные модели устройств электромагнитной обработки воды:

  • выполняют свои функции с минимальным потреблением электроэнергии (5-20 Вт/час).
  • Катушку создают из нескольких витков провода. Прибор включают в сеть. Дополнительная настройка не нужна.
  • Дальность действия достигает 2 км, чего достаточно для защиты объекта в целом.
  • Долговечность устройств превышает 20 лет.

В любом случае надо выбирать производителя, который обладает солидным опытом в профильной области деятельности!

Химические способы умягчения воды

Хорошо известная профильным специалистам методика – добавление в раствор гашеной извести. Химические реакции связывают молекулы кальция и магния с последующим образованием нерастворимого осадка. По мере накопления на дне рабочего резервуара его удаляют. Мелкие взвешенные частицы задерживают через фосфатный способ. Аналогичную технологию применяют для снижения некарбонатной составляющей с помощью соды.

Главным недостатком этого и других способов данной категории является загрязнение жидкости химикатами. Чтобы такая обработка была безопасной, приходится точно соблюдать оптимальные дозировки, тщательно контролировать все важные этапы. Качественное воспроизведение технологии в домашних условиях не представляется возможным без чрезмерных трудностей и затрат. Ее используют на муниципальных и коллективных станциях водоподготовки профессиональной категории.

Впрочем, одна «химическая» методика стала популярной именно в быту. Исследователи обнаружили, что полифосфатные соединения образуют оболочки вокруг мельчайших нерастворимых фракций. Они препятствуют объединению в крупные частицы, присоединению к стенкам труб и внешним поверхностям нагревательных приборов.

Этим полезным свойством пользуются производители фосфатных стиральных порошков. Также применяют специализированные проточные емкости, в которые помещают полифосфатные соли. Устройства монтируют на входном патрубке перед котлами и стиральными машинами. Способ не подходит для приготовления питьевой воды.

Фильтрация

Нужный эффект можно получить, если уменьшить размеры ячеек до величины молекул. Такие микроскопические протоки создают в мембранах обратного осмоса. Они способны пропускать только чистую воду. Загрязненная жидкость скапливается перед преградой, удаляется в дренаж.

Задача решена? Не следует делать поспешные выводы. Методика фильтрации действительно хороша, но только для обработки 180-220 литров/сутки. Такова производительность серийных с разумной стоимостью. Этого количества не хватит для однократного приема душа, удовлетворения других бытовых потребностей.

Чтобы увеличить производительность несколько мембран устанавливают параллельно. Для функционирования комплекта приходится поднимать давление специальной насосной станцией. Подобное оборудование для фильтрации воды стоит дорого, занимает много места.

Умягчение воды ионообменным способом

Снижают первичные и эксплуатационные расходы с помощью техники этой категории. Применяют особую засыпку, которая задерживает ионы кальция и магния. Одновременно происходит заполнение жидкости безвредными соединениями натрия.

Преимущества приведены в следующем списке:

  • Кроме солоноватого привкуса не меняются в худшую сторону исходные характеристики воды.
  • После обработки определенного количества жидкости полезные функции засыпки восстанавливают промывкой и регенерацией.
  • Эти процедуры выполняются неоднократно в автоматическом режиме, без тщательного контроля и вмешательства со стороны пользователя.
  • При соблюдении правил эксплуатации засыпка из смол сохраняет работоспособность более шести лет.

Необходимо подчеркнуть доступность регенерационной смеси. Это – недорогой раствор обычной поваренной соли (хорошей очистки).

Как и ранее, приведем нюансы, которые заслуживают упоминания для полноценного анализа умягчения воды ионообменным способом:

  • Ионообменный способ умягчения воды прерывает снабжение объекта при регенерации (длительность более часа). Чтобы устранить такой недостаток устанавливают параллельно две функциональные емкости.
  • Комплект с высокой производительностью для семьи из 2-3 человек занимает несколько кв. метров площади.
  • Работа издает сильный шум в процессе промывки, поэтому нужна эффективная звуковая изоляция помещения.
  • Каждое существенное изменение уровня жесткости необходимо корректировать ручной настройкой.
  • Хорошо оснащенный набор с блоком автоматики и несколькими рабочими баками стоит дорого.

Ультразвуковое воздействие

Обработку колебаниями соответствующего диапазона частот применяют для снижения уровня жесткости. Одновременно разрушается слой старой накипи, что пригодится для очистки труб без агрессивных химических соединений.

Ультразвук с профессиональными предосторожностями применяют для очистки и защиты промышленного оборудования. Крупные элементы этих конструкций и резьбовые соединения обладают лучшей устойчивостью к сильным вибрационным воздействиям.

Какие способы умягчения воды подходят для разных объектов недвижимости?

Оптимальную методику выбирают с учетом реальных условий будущей эксплуатации. Опытные специалисты советуют создавать общий проект с механическими и другими фильтрами для точного согласования всех функциональных компонентов.

В городской квартире можно рассчитывать на поддержание приемлемого качества жесткой воды. Соответствующие обязательства указаны в договоре со снабжающей организацией. Однако в домашних условиях не исключены аварии на магистральных трассах, броски давления. Для защиты от этих негативных воздействий на входе устанавливают фосфатный или механический фильтр с регулятором напора и контрольными манометрами. Надо подчеркнуть преимущества электромагнитного преобразователя с учетом особенностей объектов данной категории:

  • компактность;
  • небольшой вес;
  • отсутствие шумов;
  • симпатичный внешний вид.

Для автономного загородного водоснабжения расчетливые собственники предпочитают пользоваться артезианской скважиной. Такой источник обеспечивает высокую степень очистки природной фильтрацией. Но на большой глубине увеличивается концентрация примесей, вымытых из горных пород. Среди них – соединения солей в достаточно большой концентрации.

В частном доме проще найти свободное место для технологического оборудования. Здесь можно устанавливать комплекты для умягчения воды ионообменным способом. В помещение проводят необходимые инженерные сети. Надо не забывать о хорошей изоляции. Необходимо поддерживать установленный производителем температурный режим. Следует удалить хлорные и другие химические соединения, способные повредить действующую засыпку.

Умягчить воду - значит удалить из нее кальций и магний. Об­щая жесткость воды, подаваемой водопроводами для хозяйствен­но-питьевых нужд, не должна превышать 7 мг-экв/дм3, а в особых случаях, по согласованию с органами санитарно-эпидемиологичес­кой службы, не более 10 мг-экв/дм3. Норма жесткости питатель­ной воды парогенераторов может достигать 0,05 мг-экв/дм3. В за­висимости от качества исходной воды и требуемого эффекта сни­жения жесткости применяют реагентный, термохимический, ионитовый методы умягчения или различные комбинации их.

Реагентное умягчение. Реагентные методы основаны на способ­ности катионов Са2+ и Mg2+ образовывать нерастворимые и мало­растворимые соединения при обработке воды реагентами. В ка­честве реагентов наиболее часто используются известь и сода.

Декарбонизация воды только известкованием применяется в тех случаях, когда требуется одновременное снижение жесткости и щелочности воды.

Известь совместно с содой применяют для умягчения воды, в которой кальций и магний содержатся в сочетании с анионами сильных кислот.

Теоретический предел умягчения воды определяется раствори­мостью карбоната кальция и гидроксида магния. Растворимость карбоната кальция в монорастворе при температуре 0°С равна 0,15 мг-экв/дм3, а при температуре 80°С - 0,03 мг-экв/дм3; для гидроксида магния - соответственно 0,4 и 0,2 мг-экв/дм3.

Как СаС03, так и Mg(OH)2 обладают способностью образовы­вать пересыщенные растворы, которые лишь весьма медленно приближаются к равновесному состоянию даже при контакте с твердой фазой образующегося осадка. На практике нецелесообраз­но длительно выдерживать воду в водоумягчительных аппаратах до наступления равновесного состояния. Поэтому вода, умягчен­ная известкованием (если жесткость вся карбонатная) или извест - ково-содовым методом, обычно имеет остаточную жесткость не менее 0,5-1 мг-экв/дм3.

Глубина умягчения зависит от наличия в обработанной воде избытка осаждаемых ионов и осадительных реагентов. Так, при 40°С, солесодержании воды до 800 мг/дм3, наличии в ней ионов Са2+ в количестве 0,7-1,0; 1-3 и > 3 мг-экв/дм3 остаточная кар­бонатная жесткость в отсутствие замедлителей кристаллизации обычно не превышает 0,5-0,8; 0,6-0,7 и 0,5-0,6 мг-экв/дм3 соот­ветственно, а < 1,2; Щгидр < 0,4 и Жо6щ < 1,0 мг-экв/дм3. При солесодержании 800-2000 мг/дм3 Щ0бЩ = 2,0-2,2 мг-экв/дм3, Щгидр < 0,5-0,8 мг-экв/дм3 и Жобщ < 2,0 мг-экв/дм3. Здесь в под­строчнике «общ» и «гидр» обозначают соответственно «общая» и «гидратная».

Следует отметить, что вода, умягченная известкованием или известково-содовым методом, как правило, пересыщена карбона­том кальция и характеризуется очень высоким рН. Поэтому для увеличения точности дозировки реагентов необходимо в допол­нение к автоматическому регулированию пропорционально рас­ходу обрабатываемой воды корректировать дозу еще и по рН. Воз­можна также корректировка дозы в зависимости от электропро­водности обработанной воды, если содержание SO^, СГ и NO3 стабильно и невелико. При небольших колебаниях дозировки из­вести Mg2+ играет буферную роль: с увеличением дозировки из­вести повышается количество Mg2+, переводимого в осадок (ухуд­шая тем самым его свойства), при сохранении щелочности умяг­ченной воды примерно на постоянном уровне.

Контроль за процессом умягчения осуществляется по вели­чине рН, которая должна быть > 10 из-за необходимости уда­ления из воды Mg2+, или, что менее точно, по величине гид - ратной щелочности, рассчитываемой на основе титрования проб воды кислотой в присутствии индикаторов фенолфталеина и метилоранжа.

Необходимо отметить, что контроль процесса реагентного умягчения воды может осуществляться и по ее электропроводно­сти. При введении в воду извести и переходе бикарбонатов в кар­бонаты, выпадающие в осадок, электропроводность обрабатыва­емой воды изменяется. В соответствии с кривой кондуктометри - ческого титрования в момент полной нейтрализации солей карбонатной жесткости электропроводность достигает минималь­ного значения. При дальнейшем увеличении добавок реагента электропроводность повышается вследствие избытка реагента. Таким образом, оптимальная доза известкового молока, вводимого в умягчаемую воду, характеризуется минимальным значением электропроводности воды.

С повышением температуры воды ускоряются химические ре­акции и кристаллизация осадков СаС03 и Mg(OH)2. Колебания температуры ухудшают условия осаждения.

Коагуляция улучшает осаждение осадков СаС03 + Mg(OH)2. Из-за-высокого рН умягчаемой применяют только коагулян­ты вй основе железа и алюминат натрия. На 1 моль FeS04 необ­ходимо наличие в воде 4 мг 02.

Попадание в осветлитель воздуха приводит к взмучиванию и выносу осадка с умягчаемой водой. Пересыщение воды воздухом можно установить, определяя йодометрическим способом содер­жание кислорода в воде после воздухоотделителя и сравнивая по­лученные результаты с табличными для данных температур.

Термохимическое умягчение заключается в подогреве воды выше 100°С и применении извести и соды, реже - едкого натрия и соды. В результате термохимического умягчения кальциевая жесткость может быть снижена до 0,2 мг-экв/дм3, а магниевая - до 0,1 мг-экв/дм3. Термохимический метод часто сочетают с фосфатным доумягчением воды. В качестве фосфатных реагентов используют ди - или тринатрийфосфат. В результате фосфатного доумягчения можно получить воду с остаточной жесткостью 0,04-0,05 мг-экв/дм3.

Сульфатную жесткость устраняют карбонатом, гидроксидом или алюминатом бария.

Для обеспечения правильного проведения описанных выше процессов умягчения воды необходим соответствующий аналити­ческий контроль. Рекомендуемые анализы и частота их выполне­ния приведены в табл. 1.7.

Полезным руководством для обеспечения хорошего эффекта умягчения могут служить следующие правила: 1) гидратная ще­лочность должна превышать магнезиальную жесткость примерно на 0,4 мг-экв/дм3 при процессе без подогрева и на 0,2 мг-экв/дм3 при процессе с подогревом; 2) карбонатная щелочность должна превышать кальциевую жесткость примерно на 1,2 мг-экв/дм3 при процессе без подогрева и примерно на 0,8 мг-экв/дм3 при процессе с подогревом.

Так как некоторые малорастворимые соли при длительном хранении могут выпасть в осадок, a NaOH переходит в Na2C03, то не следует пользоваться данны­ми усредненных проб умягчаемой воды.

Также из-за наличия проскоков суспензии СаС03 и Mg(OH)2 в умягченную воду ее необходимо дополнительно профильтровать через дробленый антрацит. Кварцевый песок в этом случае явля­ется нежелательным материалом в связи с тем, что он может обо­гащать воду соединениями кремниевой кислоты.

Ионитовое умягчение. Оно осуществляется главным образом с применением Na+-, Н+- и NHj-форм.

В процессе умягчения воды Na-катионированием содержание кальция и магния в воде может быть снижено до весьма малых значений. Общая щелочность при этом не изменится, сухой ос­таток несколько возрастает в результате замещения в воде одного иона кальция, имеющего молекулярную массу 40,08, на два иона натрия (масса 2 х 22,99 = 45,98).

Вода

Показатели качества воды

Периодичность анализов

Обязательные

Дополнительные

Исходная

Свободная углекислота, общая жесткость, каль­ций, магний, общая ще­лочность

Сульфаты, сухой оста­ток, рН, кремний, хло­риды

Не реже 1 раза в неде­лю, а жесткость и ще­лочность - ежедневно

Умягченная

Известково-содовое умягчение

Общая жесткость, рН, щелочность общая и по фенолфталеину, взве­шенные вещества

Сульфаты, сухой оста­ток, кальций, магний, кремний. алюминий, хло­риды

Для аппаратов пери­одического действия - при каждой новой дозе реагентов; для аппара­тов непрерывного дейст­вия - ежедневно, хотя может потребоваться и более частое проведе­ние анализа, если ка­чество исходной воды существенно меняется

Фосфатное умягчение с подогревом Общаяжесткость, щелоч­ность по фенолфталеи­ну, избыток фосфатов

При фильтровании через катионит в Н-форме все катионы растворенных солей (в том числе и катионы солей жесткости) будут сорбироваться на его зернах; в воду будет переходить экви­валентное количество Н+-ионов; растворенные в воде соли будут превращаться в соответствующие кислоты. Кислотность воды, прошедшей через Н-катионитовый фильтр, который загружен сильноосновным катионитом, будет равна сумме концентраций в исходной воде солей сильных кислот.

Регенерация Н-катионитовых фильтров кислотой в количестве, недостаточном для полного вытеснения из катионита катионов жесткости («голодная» регенерация), позволяет в рабочем цикле снижать щелочность воды до 0,4-0,5 мг-экв/дм3, не снижая ее некарбонатную жесткость.

Если в умягченной воде не допускается наличия карбонатов натрия и калия, но в ней допустимо присутствие ионов аммония, то вместо H-Na-катионирования можно применять NH4-Na-Ka - тионирование.

Умягченная катионированием вода получается более коррози - онно-активной, чем исходная, из-за полного отсутствия в ней би­карбоната кальция, который при определенных условиях может образовывать защитный слой карбоната кальция на поверхности металла, находящегося в контакте с водой.

При контроле качества фильтрата катионитовых установок осо­бое внимание уделяется определению показателей, так или иначе связанных с понятием жесткости и щелочности воды: жесткости общей и карбонатной, щелочности карбонатной и гидратной, со­держанию солей кальция и магния, общему солесодержанию, ве­личине рН, содержанию анионов.

В процессе работы катионитов дополнительно необходимо пе­риодически проверять поглощение или вынос из них фильтратом органических веществ.

Под обессоливанием воды понимают процесс снижения раство­ренных в ней солей до требуемой величины. Различают частич­ное и полное обессоливание. Частным случаем обессоливания воды является опреснение, в результате которого величина соле - содержания в очищенной воде не превышает 1000 мг/дм3 - ПДК всех солей в питьевой воде.

К наиболее распространенным методам обессоливания воды относятся ионный обмен, электродиализ, обратный осмос и дис­тилляция.

Обессоливание позволяет почти полностью удалить из воды вещества, способные целиком или частично диссоциировать (на­пример, соли и кремниевую кислоту); неэлектролиты при этом могут остаться в воде. Иногда происходит также некоторое уменьшение цветности, связанное с абсорбцией кислых органи­ческих веществ ионитами и мембранами. Так как при обессоли - вании удаляются те вещества, которые проводят электрические вещества, показателем качества обработанной воды служит обыч­но ее электропроводность, выраженная в мкСм/см. Расчетное значение этого параметра при 18°С в «сверхчистой» воде состав­ляет 0,037 мкСм/см. Однако в производственных условиях пока удается получать «сверхчистую» воду с удельной электрической проводимостью 0,1 - 1,0 мкСм/см.

За основной критерий, оценивающий качество обработки воды и ионообменную способность фильтров, часто принимают элект­ропроводность воды, пороговая величина которой устанавливается по опытно-исследовательским данным. Например, электропро­водность воды после катионообменника должна быть менее 240, после слабоосновного анионообменника - 50-220 и после силь­ноосновного анионообменника < 20 мкСм/см. Превышение этих значений указывает на истощение ионообменных смол до конт­рольного уровня и на необходимость их регенерации.

Поскольку существующие нормы качества питьевой воды в большинстве своем регламентируют предельно допустимые концен­трации макро - и микрокомпонентов ее состава, то опресненные воды в основном отвечают действующим нормативным требовани­ям. Однако в связи со все расширяющимся вовлечением опреснен­ных вод в централизованные системы хозяйственно-питьевого во­доснабжения возникает необходимость дополнительного нормиро­вания минимально необходимых концентраций важнейших в гигиеническом отношении показателей качества: содержания каль­ция, бикарбонатов, общего солесодержания, натрия, калия и др. Как показывают современные медико-физиологические исследова­ния, недостаточное содержание в опресненной воды солей жест­кости (менее 1,5 мг-экв/дм3) может привести к нарушениям обме­на веществ и сердечно-сосудистым заболеваниям в организме лю­дей, длительное время употребляющих такую мягкую воду.



Понравилась статья? Поделитесь с друзьями!