Центр окружности описанной около прямоугольного. Окружность, описанная около треугольника.Треугольник, вписанный в окружность

Доказательства теорем о свойствах описанной около треугольника окружности

Серединный перпендикуляр к отрезку

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны .

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Свойства описанной около треугольника окружности. Теорема синусов

Фигура Рисунок Свойство
Серединные перпендикуляры
к сторонам треугольника
пересекаются в одной точке .

Центр описанной около остроугольного треугольника окружности Центр описанной около остроугольного внутри треугольника.
Центр описанной около прямоугольного треугольника окружности Центром описанной около прямоугольного середина гипотенузы .
Центр описанной около тупоугольного треугольника окружности Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

,

Площадь треугольника

S = 2R 2 sin A sin B sin C ,

Радиус описанной окружности

Для любого треугольника справедливо равенство:

Серединные перпендикуляры к сторонам треугольника

Все серединные перпендикуляры , проведённые к сторонам произвольного треугольника, пересекаются в одной точке .

Окружность, описанная около треугольника

Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центр описанной около прямоугольного треугольника окружности

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы .

Центр описанной около тупоугольного треугольника окружности

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Для любого треугольника справедливы равенства (теорема синусов):

,

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Площадь треугольника

Для любого треугольника справедливо равенство:

S = 2R 2 sin A sin B sin C ,

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Радиус описанной окружности

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность . Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Начальный уровень

Описанная окружность. Визуальный гид (2019)

Первый вопрос, который может возникнуть: описанная - вокруг чего?

Ну, вообще-то иногда бывает и вокруг чего угодно, а мы будем рассуждать об окружности, описанной вокруг (иногда ещё говорят «около») треугольника. Что же это такое?

И вот, представь себе, имеет место удивительный факт:

Почему этот факт удивительный?

Но ведь треугольники - то бывают разные!

И для всякого найдётся окружность, которая пройдёт через все три вершины , то есть описанная окружность.

Доказательство этого удивительного факта можешь найти в следующих уровнях теории, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины. Вот, скажем, параллелограмм - отличный четырехугольник, а окружности, проходящей через все его четыре вершины - нет!

А есть только для прямоугольника:

Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.

Знаешь ли ты, что такое серединный перпендикуляр ?

А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.

Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок - все три серединных перпендикуляра пересекаются в одной точке.

Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе - вовсе не всегда!

А вот если остроугольный, то - внутри:

Что же делать с прямоугольным треугольником?

Да ещё с дополнительным бонусом:

Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая .

А именно:

Ну и, конечно,

1. Существование и центр описанной окружности

Тут возникает вопрос: а для всякого ли треугольника существует такая окружность? Вот оказывается, что да, для всякого. И более того, мы сейчас сформулируем теорему, которая ещё и отвечает на вопрос, где же находится центр описанной окружности.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему. Если ты читал уже тему « » разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал - не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Ну вот, например, является ли множество мячей - «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы. А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют. В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Тут множество - это серединный перпендикуляр, а свойство « » - это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  1. Всякая точка, которая равноудалена от концов отрезка - находится на серединном перпендикуляре к ему.

Соединим с и с.Тогда линия является медианой и высотой в. Значит, - равнобедренный, - убедились, что любая точка, лежащая на серединном перпендикуляре, одинаково удалена от точек и.

Возьмём - середину и соединим и. Получилась медиана. Но - равнобедренный по условию не только медиана, но и высота, то есть - серединный перпендикуляр. Значит, точка - точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник. Проведём два серединных перпендикуляра и, скажем, к отрезкам и. Они пересекутся в какой-то точке, которую мы назовем.

А теперь, внимание!

Точка лежит на серединном перпендикуляре;
точка лежит на серединном перпендикуляре.
И значит, и.

Отсюда следует сразу несколько вещей:

Во - первых , точка обязана лежать на третьем серединном перпендикуляре, к отрезку.

То есть серединный перпендикуляр тоже обязан пройти через точку, и все три серединных перпендикуляра пересеклись в одной точке.

Во - вторых : если мы проведём окружность с центром в точке и радиусом, то эта окружность также пройдёт и через точку, и через точку, то есть будет описанной окружностью. Значит, уже есть, что пересечение трёх серединных перпендикуляров - центр описанной окружности для любого треугольника.

И последнее: о единственности. Ясно (почти), что точку можно получить единственным образом, поэтому и окружность - единственная. Ну, а «почти» - оставим на твоё размышление. Вот и доказали теорему. Можно кричать «Ура!».

А если в задаче стоит вопрос «найдите радиус описанной окружности»? Или наоборот, радиус дан, а требуется найти что - то другое? Есть ли формула, связывающая радиус описанной окружность с другими элементами треугольника?

Обрати внимание: теорема синусов сообщает, что для того чтобы найти радиус описанной окружности, тебе нужна одна сторона (любая!) и противолежащий ей угол . И всё!

3. Центр окружности - внутри или снаружи

А теперь вопрос: может ли центр описанной окружности лежать снаружи треугольника.
Ответ: ещё как может. Более того, так всегда бывает в тупоугольном треугольнике.

И вообще:

ОПИСАННАЯ ОКРУЖНОСТЬ. КОРОТКО О ГЛАВНОМ

1. Окружность, описанная около треугольника

Это окружность, которая проходит через все три вершины этого треугольника.

2. Существование и центр описанной окружности

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Окружность описанная около прямоугольного треугольника. В этой публикации мы с вами рассмотрим доказательство одного «математического факта», который широко используется при решении задач по геометрии. В одних источниках сей факт обозначается как теорема, в других как свойство, формулировки имеются разные, но суть их одна:

Любой треугольник построенный на диаметре окружности, третья вершина которого лежит на этой окружности является прямоугольным!

То есть закономерность в этом геометрическом узоре состоит в том, что, куда бы вы ни поместили вершину треугольника, угол при этой вершине всегда будет прямым:

Заданий присутствующих с составе экзамена по математике, в ходе решений которых используется это свойство, достаточно много.

Стандартное доказательство считаю весьма путанным и перегруженным математическими символами, его вы найдёте в учебнике. Мы же рассмотрим простое и интуитивно понятное. Его я обнаружил в одном замечательном эссе под названием "Плач математика ", рекомендую к прочтению учителям и ученикам.

Сначала вспомним некоторые теоретические моменты:

Признак параллелограмма. У параллелограмма противолежащие стороны равны. То есть если у четырехугольника обе пары противолежащих сторон равны, то этот четырехугольник – параллелограмм.

Признак прямоугольника. Прямоугольник является параллелограммом, и его диагонали равны. То есть если у параллелограмма диагонали равны, то он является прямоугольником.

*Прямоугольник является параллелограммом, это его частный случай.

Итак, приступим:

Возьмем треугольник и относительно центра окружности повернем его на 180 0 (перевернём его). У нас получится четырехугольник, вписанный в окружность:

Поскольку мы просто повернули треугольник, то противолежащие стороны четырехугольника равны, значит это параллелограмм. Поскольку треугольник повернут ровно на 180 градусов, значит его вершина диаметрально противоположна вершине «исходного» треугольника.

Получается, что диагонали четырёхугольника равны, так они являются диаметрами. Имеем четырёхугольник у которого противолежащие стороны равны и диагонали равны, следовательно это есть прямоугольник, а у него все углы прямые.

Вот и всё доказательство!

Можно рассмотреть и такое, тоже простое и понятное:

Посмотреть ещё одно доказательство =>>

Из точки С построим отрезок проходящий через центр окружности, другой конец которого будет лежать на противоположной точке окружности (точка D). Точку D соединим с вершинами А и В: Получили четырёхугольник. Треугольник АОD равен треугольнику СОВ по двум сторонам и углу между ними:

Из равенства треугольников следует, что AD = CB.

Аналогично и АС = DB.

Можем сделать вывод, что четырёхугольник является параллелограммом. Кроме того, его диагонали равны – АВ изначально дан как диаметр, СD также диаметр (проходит через точку О).

Таким образом, АСВD прямоугольник, значит все его углы прямые. Доказано!

Ещё один примечательный подход, который ярко и «красиво» говорит нам о том, что рассматриваемый угол всегда прямой.

Посмотрите и вспомните информацию про . А теперь посмотрите на эскиз:

Угол АОВ не что иное как центральный угол опирающийся на дугу АDB, и равен он 180 градусам. Да, АВ это диаметр окружности, но ничто нам не мешает считать АОВ центральным углом (это развёрнутый угол). Угол же АСВ является вписанным для него, он опирается также же дугу на АDB.

А мы знаем, что вписанный угол равен половине центрального, то есть как бы мы не разместили точку С на окружности, угол АСВ всегда будет равен 90 градусам, то является прямым.

Какие выводы можно сделать применительно к решению задач, в частности включённых в экзамен?

Если в условии речь идёт о треугольнике вписанном в окружность и построенном на диаметре этой окружности, то однозначно этот треугольник является прямоугольным.

Если сказано, что прямоугольный треугольник вписан в окружность, то это означает, что его гипотенуза является совпадает с её диаметром (равна ему) и центр гипотенузы совпадает с центром окружности.

На этом всё. Успеха вам!

С уважением, Александр Крутицких.



Понравилась статья? Поделитесь с друзьями!